Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности


НазваниеОтравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности
страница1/9
Дата публикации29.03.2013
Размер0.76 Mb.
ТипДокументы
userdocs.ru > Биология > Документы
  1   2   3   4   5   6   7   8   9




Глава 10. Отравляющие и высокотоксичные вещества общеядовитого действия
Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности.

Как указывалось ранее (см. раздел “Общая токсикология”), основным содержанием биоэнергетических процессов в организме является непрерывный синтез в клетках и поддержание на постоянном уровне концентрации богатых энергией (макроэргических) соединений, в частности, аденозинтрифосфорной кислоты (АТФ). Источником, запасаемой в форме АТФ энергии, является биологическое окисление субстратов, образующихся в ходе метаболизма питательных веществ, поступающих из окружающей среды (рис. 24).


^ Рисунок 24. Модель процесса клеточного дыхания

Энергия, запасенная в субстратах, образуемых в цикле Кребса, при их окислении (движение электронов и протонов по цепи дыхательных ферментов к кислороду), обеспечивает работу сопряженного механизма синтеза макроэргов путем фосфорилирования их предшественников (в частности, превращение аденозиндифосфорной кислоты в аденозинтрифосфорную)
Практически любой токсикант, вызывая тяжелую, острую интоксикацию, в той или иной степени нарушает энергетический обмен, то есть оказывает общеядовитое действие. Однако в большинстве случаев нарушение биоэнергетики является лишь звеном в патогенезе токсического процесса, инициированного за счет иных механизмов. Вместе с тем имеются вещества, способные первично повреждать систему энергообеспечения клеток, нарушая (рис. 25):

- механизмы транспорта кислорода кровью;

- механизмы биологического окисления;

- механизмы сопряжения биологического окисления и синтеза макроэргов (фосфорилирования).

^ Рисунок 25. Механизмы действия некоторых токсикантов на биоэнергетические процессы
Токсиканты, основным (первичным) механизмом повреждающего действия которых на организм является нарушение биоэнергетики, могут быть объединены в группу веществ общеядовитого действия.

Важными особенностями токсического процесса, развивающегося при отравлении такими веществами, являются:

- быстрота развития острой интоксикации (короткий скрытый период, бурное течение токсического процесса);

- функциональный характер нарушений со стороны вовлеченных в токсический процесс органов и систем, отсутствие грубых структурно-морфологических изменений в тканях отравленных;

- вовлечение в патологический процесс преимущественно органов и систем с интенсивным энергообменом и, прежде всего, центральной нервной системы;

- закономерный характер развития нарушений со стороны ЦНС: возбуждение, переходящее в состояние гиперактивации, а затем глубокого угнетения (изменение сознания, судороги, кома и т.д.).

Ряд веществ-ингибиторов энергетического обмена при экстремальных ситуациях могут стать причиной групповых и массовых поражений людей и потому представляют интерес для военной медицины.

Классифицировать ОВТВ рассматриваемой группы можно в соответствии с особенностями механизма их токсического действия:

1. ОВТВ, нарушающие кислородтранспортные функции крови:

1.1. Нарушающие функции гемоглобина:

1.1.1. Образующие карбоксигемоглобин (монооксид углерода, карбонилы металлов).

1.1.2. Образующие метгемоглобин (оксиды азота, ароматические нитро- и аминосоединения, нитриты и др.).

1.2. Разрушающие эритроциты (мышьяковистый водород).

2. ОВТВ, нарушающие тканевые процессы биоэнергетики:

2.1. Ингибиторы ферментов цикла Кребса (производные фторкарбоновых кислот).

2.2. Ингибиторы цепи дыхательных ферментов (синильная кислота и ее соединения).

2.3. Разобщители тканевого дыхания и фосфорилирования (динитроортокрезол, динитрофенол).

Наряду с общими чертами, патологические процессы, развивающиеся при острых отравлениях ОВТВ с различными механизмами общеядовитого действия, имеют и свою специфику.
10.1. ОВТВ, нарушающие кислородтранспортные функции крови
10.1.1. ОВТВ, нарушающие функции гемоглобина
Одна из важнейших функций крови - транспорт кислорода от легких к тканям. Транспорт кислорода осуществляется двумя способами:

- гемоглобином - в форме соединения;

- плазмой - в форме раствора.

В растворенном состоянии плазмой крови переносится около 0,2 мл О2 на 100 мл крови. В связанной с гемоглобином форме эритроциты переносят в 100 раз больше кислорода (20 мл на 100 мл крови). 1 г гемоглобина способен обратимо связать около 1,5 мл О2, а в 100 мл крови содержится около 14 - 16 г гемоглобина.

В результате взаимодействия кислорода с гемоглобином образуется нестойкое соединение оксигемоглобин (HbO) (рис. 26).

^ Рисунок 26. Кривая насыщения гемоглобина кислородом
При повышении парциального давления кислорода (сатурация крови в легких) содержание НbО увеличивается и при 100 mmHg О2 приближается к 100%. При понижении парциального давления О2 (в тканях) НbО распадается, при этом выделяющийся кислород утилизируется тканями организма. Процесс насыщения гемоглобина О2 и рассыщения оксигемоглобина описывается S-образной кривой (рисунок 3). Такая форма зависимости между рО2 и %НbО есть следствие явления взаимодействия четырех субъединиц гемоглобина в молекулярном комплексе (гем-гем взаимодействие). Физиологический смысл явления - обеспечение максимально возможного выделения кислорода в ткани при незначительном различии парциального давления газа в крови и тканях (при рО2 крови около 40 mmHg и рО2 тканей около 20 mmHg гемоглобин высвобождает около 50% связанного кислорода).

В норме на сродство кислорода к гемоглобину влияют многочисленные факторы. Среди основных: рН, рСО2 (эффект Бора), биорегуляторы процесса диссоциации оксигемоглобина (2,3-дифосфоглицерат и др.). При повышении рН, рСО2 и содержания 2,3-дифосфоглицерата в эритроцитах сродство гемоглобина к кислороду снижается - отдача кислорода тканям возрастает.

Из сказанного ясно, что вещества, взаимодействующие с гемоглобином и нарушающие его свойства, будут существенно изменять кислородтранспортные свойства крови, вызывая развитие гипоксии гемического типа.

Кислородное голодание плохо переносится человеком и другими млекопитающими, и в тяжелых случаях может привести к серьезным нарушениям со стороны различных органов и систем. Особенно чувствительными к гипоксии являются клетки органов с интенсивным энергообменом: сердечной мышцы, почек и головного мозга (табл. 27).
Таблица 27.

^ Потребление кислорода различными органами крысы (по Field et al., 1939)


Орган

Скорость потребления кислорода, мл/г ткани мин

Скелетная мускулатура

0,875

Кожа

0,416

Кости

0,153

Кровь

0,025

Печень

2,010

Почки

4,120

Мозг

1,840

Легкие

1,250

Сердце

1,930



Функциональная состоятельность мозга целиком зависит от непрерывного снабжения его кислородом. Так, при полной аноксии “местных” запасов кислорода (7-10 мл) хватает лишь на 10 секунд. Мозг, составляя по массе 2-3% от массы тела, потребляет около 20% всего потребляемого организмом кислорода. Нормальная скорость кровотока составляет 50-60 мл/мин/100 г ткани, а скорость поглощения О2 – 3,5 мл/мин/100 г ткани. Собственно нервные клетки составляют 5% от общей массы мозга, но потребляют 25% О2, потребляемого мозгом (нейрон - 350-450 мкл О2/мин; глиальные клетки - 60 мкл О2/мин). До 90% вырабатываемой и потребляемой энергии расходуется на поддержание электрохимического градиента возбудимых мембран и метаболизм биологически активных веществ, участвующих в передаче нервных импульсов. Неудивительно, что сознание, как функциональный феномен, утрачивается уже в течение несколько секунд полной аноксии мозга. Необратимые изменения нейронов наступают позже, спустя 4 - 5 минут после полного прекращения снабжения мозга кислородом. Другие органы и ткани, расходующие энергию в основном на обеспечение пластического обмена (процессы синтеза и разрушения структурных элементов живого), способны переживать (хотя и с нарушениями функций) нехватку кислорода в течение нескольких часов.

Токсиканты, избирательно нарушающие кислородтранспортные функции крови, обладают высокой токсичностью.
^ 10.1.1.1. ОВТВ, образующие карбоксигемоглобин
Карбоксигемоглобин образуется при действии на организм монооксида углерода (СО), так называемого угарного газа, а также при отравлении некоторыми карбонилами металлов, которые, попав в организм, разрушаются с образованием СО. В недалеком прошлом тетракарбонил никеля (Ni(CO)4) и пентакарбонил железа (Fe(CO)5) изучались на предмет возможности создания на их основе боевых отравляющих веществ.
^ 10.1.1.1.1. Карбонилы металлов

Соединения металлов с СО называются карбонилами металлов. Их применяют в некоторых областях химической промышленности. Из множества соединений особый интерес представляют пентакарбонил железа и тетракарбонил никеля – вещества, легко разлагающиеся с образованием СО. Оба токсиканта представляют собой бесцветные летучие жидкости (максимальная концентрация в воздухе - более 300 г/м3), пары которых, примерно в 6 раз тяжелее воздуха (могут образовывать нестойкие зоны заражения). Легко разрушающиеся с образованием СО. Плохо растворяются в воде; хорошо - в липидах.

Действуют как ингаляционно, так и через неповрежденную кожу (в крови разрушаются с образованием СО).

В зонах заражения возможны два варианта поражения - собственно веществами и продуктами их разложения. Собственно вещества обладают свойствами пульмонотоксикантов (см. выше). Тяжелое поражение сопровождается развитием (в течение 10 - 15 часов) токсического отека легких. Токсичным продуктом разложения веществ является оксид углерода, особенности действия которого представлены ниже.
^ 10.1.1.1.2. Оксид углерода (СО)

Оксид углерода является продуктом неполного сгорания углерода. Он образуется в качестве примеси везде, где происходит горения углеродсодержащего топлива (топка печей, эксплуатация двигателей внутреннего сгорания и т.д.). Массовые поражение угарным газом возможны в очагах пожаров и при накоплении вещества в плохо вентилируемых пространствах: помещениях, туннелях, шахтах и т.д., где действует источник его образования.
^ Физико-химические свойства

СО – бесцветный газ, не имеющий запаха, с низкой плотностью по воздуху (0,97). Кипит при –191,5 0С и замерзает при –205,1 0С. В воде и плазме крови растворяется мало (около 2% по объему), лучше в спирте. Смесь СО с воздухом способна взрываться. Плохо сорбируется активированным углем и другими пористыми материалами. Оксид углерода как соединение с двухвалентным атомом углерода является восстановителем и может вступать в реакции окисления. На воздухе горит синим пламенем с образованием диоксида углерода. При нормальной температуре превращение СО в СО2 идет при участии катализаторов, например гопкалита (смеси двуокиси марганца (60%) и окиси меди (40%)). Поскольку газ легче воздуха зоны нестойкого химического заражения на открытом пространстве могут формироваться лишь в очагах обширных пожаров.
Токсичность

Чувствительность людей к оксиду углерода колеблется в довольно широких пределах. Она зависит от многих факторов: от длительности экспозиции, степени физической нагрузки в момент действия яда, от температуры внешней среды и состояния организма. Отравление наступает быстрее и протекает тяжелее при анемиях, авитаминозах, у истощенных людей. Пребывание в атмосфере, содержащей 0,01 объемный % СО (0,2 мг/л) при физической нагрузке допустимо не долее 1 часа. После этого появляются признаки отравления. Отчетливая клиника острого поражения развивается при содержании СО в воздухе более 0,1 объемного %.
Токсикокинетика

Единственный способ поступления газа в организм - ингаляционный. Оксид углерода, при вдыхании зараженного им воздуха, легко преодолевает легочно-капиллярную мембрану альвеол и проникает в кровь. Скорость насыщения крови оксидом углерода увеличивается при повышении его парциального давления во вдыхаемом воздухе, усилении внешнего дыхания и интенсификации легочного кровообращения (увеличиваются при физических нагрузках). По мере увеличения концентрации яда в крови скорость резорбции замедляется. При достижении равновесия в содержании СО в альвеолярном воздухе и в крови дальнейшее поступление его в организм прекращается.

Выделение оксида углерода из организма при обычных условиях происходит в неизмененном состоянии также через легкие. Период полувыведения составляет 2 - 4 часа.
^ Основные проявления интоксикации

Раздражающим действием оксид углерода не обладает. Контакт с веществом проходит незамеченным. Тяжесть клинической картины отравления угарным газом определяется содержанием СО во вдыхаемом воздухе, длительностью воздействия, потребностью организма в кислороде, интенсивностью физической активности пострадавшего. По степени тяжести интоксикации принято делить на легкие, средние и тяжелые.

^ Легкая степень отравления формируется при действии относительно невысоких концентраций яда. Она развивается медленно (порой в течение нескольких часов) и характеризуется сильной головной болью, головокружением, шумом в ушах, потемнением в глазах, понижением слуха, ощущением “пульсации височных артерий”, тошнотой, иногда рвотой. Нарушается психическая деятельность: пораженные теряют ориентировку во времени и пространстве, могут совершать немотивированные поступки. Отмечается повышение сухожильных рефлексов. У отравленного развивается тахикардии, аритмии, повышается артериальное давление. Возникает одышка - признак компенсаторной реакцией организма на развивающуюся гипоксию. Однако в результате одышки увеличивается количество выдыхаемого диоксида углерода (СО2), развивается газовый алкалоз. Кроме того, учащение дыхания при нахождении человека в отравленной зоне является дополнительным фактором, ускоряющим поступление оксида углерода в организм.

Легко пораженный СО утрачивает боеспособность. Однако при прекращении поступления яда в организм все перечисленные симптомы отравления в течение нескольких часов проходят без каких-либо последствий.

При продолжительном поступлении оксида углерода в организм или при действии его в более высоких концентрациях развивается отравление средней степени тяжести, характеризующееся более выраженными проявлениями интоксикации, большей скоростью их развития. Нарушается координация движений. Сознание затемняется, развивается сонливость и безразличие к окружающей обстановке, появляется выраженная мышечная слабость. Слизистые оболочки и кожа приобретают розовую окраску. Могут развиваться фибриллярные подергиваний мышц лица. Возможно повышение температуры тела до 38-40 0С. Одышка усиливается, пульс учащается. Артериальное давление после кратковременного подъема, связанного с возбуждением симпатико-адреналовой системы и выбросом катехоламинов из надпочечников, снижается. Этот эффект объясняют прямым действием СО и рефлекторной реакцией (с хеморецепторов каротидного синуса) на центры регуляции сосудистого тонуса.

Прогрессирующая гипоксия активирует процессы анаэробного гликолиза, о чем свидетельствует активация ряда ферментов (альдолазы, дегидрогеназы-3-фосфоглицеринового альдегида, лактатдегидрогеназы). В результате в организме накапливаются молочная и пировиноградная кислоты. Это способствует развитию метаболического ацидоза, который приходит на смену газовому алкалозу.

При отравлении средней степени тяжести в большинстве случаев через несколько часов (до суток) после прекращения действия яда состояние пострадавших существенно улучшается, однако довольно долго сохраняется тошнота, головная боль, сонливость, склонность к головокружению, шаткая походка.

^ Тяжелое отравление характеризуется быстрой потерей сознания, появлением признаков гипертонуса мышц туловища, конечностей, шеи и лица (ригидность затылочных мышц, тризм жевательной мускулатуры). На высоте токсического процесса могут развиться судороги клонико-тонического характера. Кожные покровы и слизистые оболочки приобретают ярко-розовый цвет (признак высокого содержания карбоксигемоглобина в крови). Если в этот период пострадавший не погибает, судороги прекращаются, но развивается кома: утрачиваются рефлексы, мышцы расслабляются. Дыхание становится поверхностным, неправильным. Зрачки расширены, на свет не реагируют. Пульс частый, слабого наполнения, артериальное давление резко снижено. При регистрации биоэлектрической активности сердца на электрокардиограмме определяются экстрасистолия, нарушение внутрисердечной проводимости, признаки диффузных и очаговых мышечных изменений, острой коронарной недостаточности. Изменения в мышце сердца, регистрируемые на ЭКГ, отчасти обусловлены изменением электролитного состава крови: увеличивается содержание кальция и магния, уменьшается содержание натрия и калия. В связи с сужением периферических сосудов происходит переполнение кровью внутренних органов и полых вен. Развиваются застойные явления, затрудняющие работу сердца.

В крови, вследствие рефлекторного сокращения селезенки, увеличивается до 6-7.1012/л количество эритроцитов, развиваются лейкоцитоз со сдвигом формулы крови влево, относительная лимфопения и эозинопения. Растет содержание мочевины в крови. В таком состоянии отравленный может пребывать несколько часов, и при нарастающем угнетении дыхания с прогрессирующим падением сердечной деятельности наступает смертельный исход. При благоприятном течении отравления и своевременном оказании медицинской помощи симптомы интоксикации исчезают, и через 3-5 дней состояние пострадавшего нормализуется. Изменения ЭКГ при тяжелых отравлениях порой выявляются в течение нескольких недель и даже месяцев.

В случае высокого содержания во вдыхаемом воздухе оксида углерода (до нескольких процентов) на фоне пониженного парциального давления О2 (до 17-14%) при выполнении физической нагрузки, сопровождающейся усиленным газообменом, (ситуация, возникающая при пожарах, взрывах боеприпасов в замкнутых пространствах и т.д.) развивается молниеносная форма отравления (Ю.В. Другов, 1959). Пораженные быстро теряют сознание. Возможны кратковременные судороги, за которыми наступает смерть или развивается тяжелая кома. Прогноз неблагоприятный, если коматозное состояние продолжается более двух суток.

Выделяют также синкопальную форму интоксикации. По данным Б.И. Предтеченского, эта разновидность поражения составляет до 10-20% всех случаев отравления и развивается у лиц с нарушенными механизмами регуляции гемодинамики. При этом варианте течения отравления наблюдается резкое снижение артериального давления, сознание быстро утрачивается, кожные покровы и слизистые оболочки становятся бледными (“белая асфиксия”). Развившееся коллаптоидное состояние может продолжаться несколько часов. Возможен смертельный исход от паралича дыхательного центра.
  1   2   3   4   5   6   7   8   9

Похожие:

Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconОтравляющие и высокотоксичные вещества цитотоксического действия...
В основе такого действия лежит прямое, или опосредованное иными механизмами, поражение внутриклеточных структур, сопровождающееся...
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconОтравляющие и высокотоксичные вещества раздражающего действия
Раздражающим называется действие химических веществ на окончания чувствительных нервных волокон, разветвляющихся в покровных тканях,...
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconОтравляющие и высокотоксичные вещества нейротоксического действия...
Поэтому практически любая острая интоксикация в той или иной степени сопровождается нарушениями функций нервной системы. Тем не менее...
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconМетодическая разработка для занятия по токсикологии экстремальных...
...
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconМетодическая разработка для занятий по токсикологии экстремальных...
Отравляющие и сильнодействующие ядовитые вещества удушающего действия. Клиника. Диагностика и лечение
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconМетодическая разработка для занятия по токсикологии экстремальных...
Отравляющие и сильнодействующие ядовитые вещества психотомиметического действия. Клиника. Диагностика и лечение
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconМетодическая разработка для занятия по токсикологии экстремальных...
Отравляющие и сильнодействующие ядовитые вещества кожно-нарывного (резорбтивного) действия. Клиника. Диагностика и лечение
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconТема: «Чрезвычайные ситуации, связанные с выбросом аварийно опасных химических веществ»
Определение понятия «аварийноопасные химические вещества». Три основные классификации аварийноопасных химических веществ
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности icon32. Определение лекарственных средств. Изменение действия лекарственных...
Тного, растений, минералов, методами синтеза или с применением биологических технологий. К лекарственным средствам относятся так...
Отравляющие и высокотоксичные вещества общеядовитого действия Общеядовитым называется действие химических веществ на организм, сопровождающееся повреждением биологических механизмов энергетического обеспечения процессов жизнедеятельности iconМетодические указания по теме №4 практического занятия «Токсичные...
Изучить основные формы биоэнергетических нарушений в организме в результате химического поражения
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница