Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны


НазваниеСлюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны
страница1/3
Дата публикации27.04.2013
Размер0.54 Mb.
ТипДокументы
userdocs.ru > Биология > Документы
  1   2   3
Стоматология

  1. Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны.

Слюна́ (лат. saliva) — прозрачная бесцветная жидкость, жидкая биологическая среда организма выделяемая в полость рта тремя парами крупных слюнных желез (подчелюстные, околоушные, подъязычные) и множеством мелких слюнных желез полости рта. В полости рта образуется смешанная слюна или ротовая жидкость, состав которой отличается от состава смеси секретов желез, так как в ротовой жидкости присутствуют микроорганизмы и продукты их жизнедеятельности и различные компоненты пищи, компоненты зубного налета и зубного камня.[источник не указан 663 дня] Слюна смачивает полость рта, способствуя артикуляции, обеспечивает восприятие вкусовых ощущений, смазывает и склеивает пережёванную пищу, способствуя глотанию. Кроме того, слюна очищает полость рта, обладает бактерицидным действием, предохраняет от повреждения зубы. Под действием ферментов слюны в ротовой полости начинается переваривание углеводов.

Состав слюны
Слюна обладает pH от 5,6 до 7,6. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов, муцин (формирует и склеивает пищевой комок), лизоцим (бактерицидный агент), ферменты амилазу и мальтазу, расщепляющие углеводы до олиго- и моносахаридов, а также другие ферменты, некоторые витамины. Также состав секрета слюнных желез меняется в зависимости от характера раздражителя.

Вещество Содержание[1]

Вода 994 г/л

Белки 1,4—6,4 г/л

Муцин 0,9—6,0 г/л

Холестерин 0,02—0,50 г/л

Глюкоза 0,1—0,3 г/л

Аммоний 0,01—0,12 г/л

Мочевая кислота 0,005—0,030 г/л

Соли натрия 6—23 ммоль/л

Соли калия 14—41 ммоль/л

Соли кальция 1,2—2,7 ммоль/л

Соли магния 0,1—0,5 ммоль/л

Хлориды 5—31 ммоль/л

Гидрокарбонаты 2—13 ммоль/л

Мочевина 140—750 ммоль/л

^ Секреция слюны

В среднем за сутки выделяется 1—2,5 л слюны. Слюноотделение находится под контролем вегетативной нервной системы. Центры слюноотделения располагаются в продолговатом мозге. Стимуляция парасимпатических окончаний вызывает образование большого количества слюны с низким содержанием белка. Наоборот, симпатическая стимуляция приводит к секреции малого количества вязкой слюны. Без стимуляции секреция слюны происходит со скоростью около 0,5 мл/мин.

Отделение слюны уменьшается при стрессе, испуге или обезвоживании и практически прекращается во время сна и наркоза. Усиление выделения слюны происходит при действии обонятельных и вкусовых стимулов, а также вследствие механического раздражения крупными частицами пищи и при жевании.

^ Буферная ёмкость слюны

Буферная ёмкость слюны — это способность нейтрализовать кислоты и щелочи. Установлено, что приём в течение длительного времени углеводистой пищи снижает, а приём высокобелковой — повышает буферную ёмкость слюны. Высокая буферная ёмкость слюны — фактор, повышающий устойчивость зубов к кариесу

  1. ^ Основные органические компоненты слюны: белки, муцины, ферменты, их роль.

секрет смешанных всех слюнных желез человека содержит 99,4—99,5 % воды и 0,5—0,6 % плотного остатка, который состоит из неорганических и органических веществ (табл. 11.2). Неорганические компоненты в слюне представлены ионами калия, натрия, кальция, магния, железа, меди, хлора, фтора, йода, роданистых соединений, фосфата, сульфата, бикарбоната и составляют примерно '/3 часть плотного остатка, а 2/3 приходится на органические вещества. Минеральные вещества слюны поддерживают оптимальные условия среды, в которой осуществляется гидролиз пищевых веществ ферментами слюны (осмотическое давление, близкое к нормальному, необходимый уровень рН). Значительная часть минеральных компонентов слюны всасывается в кровь слизистой оболочки желудка и кишечника. Это говорит об участии слюнных желез в поддержании постоянства внутренней среды организма.
Органические вещества плотного остатка — это белки (альбумины, глобулины, свободные аминокислоты), азотсодержащие соединения небелковой природы (мочевина, аммиак, креатин), лизоцим и ферменты (альфа-амилаза и мальтаза). Альфа-амилаза является гидролитическим ферментом и расщепляет 1,4-глюкозидные связи в молекулах крахмала и гликогена с образованием декстринов, а затем мальтозы и сахарозы. Мальтаза (глюкозидаза) расщепляет мальтозу и сахарозу до моносахаридов. Вязкость и ослизняющие свойства слюны обусловлены наличием в ней мукополисахаридов (муцина). Слизь слюны склеивает частички пищи в пищевой комок; обволакивает слизистую оболочку ротовой полости и пищевода, она защищает ее от микротравм и проникновения патогенных микробов. Другие органические компоненты слюны, например холестерин, мочевая кислота, мочевина, являются экскретами, подлежащими удалению из организма.
Слюна образуется как в ацинусах, так и в протоках слюнных желез. В цитоплазме железистых клеток содержатся секреторные гранулы, располагающиеся преимущественно в околоядерной и апикальной частях клеток, вблизи аппарата Гольджи. В ходе секреции размер, количество и расположение гранул изменяются. По мере созревания секреторных гранул они смещаются от аппарата Гольджи к вершине клетки. В гранулах осуществляется синтез органических веществ, которые двигаются с водой через клетку по эндоплазматической сети. В ходе секреции слюны количество коллоидного материала, находящегося в виде секреторных гранул, постепенно уменьшается по мере его расходования и возобновляется в период покоя в процессе его синтеза.
В ацинусах слюнных желез осуществляется первый этап образования слюны. В первичном секрете содержится альфа-амилаза и муцин, которые синтезируются гландулоцитами. Содержание ионов в первичном секрете незначительно отличается от их концентрации во внеклеточных жидкостях, что говорит о переходе этих компонентов секрета из плазмы крови. В слюнных протоках состав слюны существенно изменяется по сравнению с первичным секретом: ионы натрия активно реабсорбируются, а ионы калия активно секретируются, но с меньшей скоростью, чем всасываются ионы натрия. В результате концентрация натрия в слюне снижается, тогда как концентрация ионов калия возрастает. Существенное преобладание реабсорбции ионов натрия над секрецией ионов калия увеличивает электронегативность мембран клеток слюнных протоков (до 70 мВ), что вызывает пассивную реабсорбцию ионов хлора. Одновременно усиливается секреция ионов бикарбоната эпителием протоков, что обеспечивает ощелачивание слюны.

  1. ^ Ферменты слюны, их роль. Роль слюны в поступлении ионов Са и фосфатов в эмаль.

ФЕРМЕНТЫ СЛЮНЫ [ salivary enzymes ]

Слюна, содержит пищеварительные ферменты: α-амилазу и мальтазу, а также непищеварительные ферменты: калликреин и лизоцим.

Твердая пища, попадающая в полость рта, измельчается и перемешивается со слюной. Слюна содержит пищеварительные ферменты α-амилазу (α - амилаза) и мальтазу.

Альфа-амилаза гидролизует крахмал и гликоген с образованием мальтозы (~20% конечного продукта гидролиза), мальтотриозы, а также смеси разветвлённых олигосахаридов (α-декстрины), неразветвлённых олигосахаридов и некоторого количества глюкозы (вместе ~80% конечного продукта гидролиза). Альфа-амилаза, как и любые другие ферменты секретируется железистыми клетками и резервируется в неактивной форме и активируется при выведении. Для активации α-амилазы необходимы анионы хлора. Интенсивность и продолжительность гидролиза углеводов зависит от щёлочности среды. Пределы уровня Щёлочности оптимальные для максимального действия α-амилазы pH = 6,6 ÷ 6,8.

Мальтаза слюны действует на углевод мальтозу, расщепляя её до глюкозы. Пределы уровня Щёлочности оптимальные для максимального действия мальтазы pH = 5,8 ÷ 6,2.

При продвижении из полости рта в желудок пищевой комок вклинивается в толщу ранее принятой пищи, находящейся в желудке. Это на некоторое время может задержать изменение среды пищевого комка со Щёлочной на кислую, обусловленное перемешиванием с соляной кислотой желудочного сока. В таких условиях Щёлочной среды ферменты слюны продолжают гидролиз крахмала и гликогена. В полости желудка переваривается ~30 ÷ 40% всех углеводов, поступивших с пищей. Постепенно соляная кислота с поверхности перемешивается с содержимым желудка, и его Щёлочная среда меняется на кислую. Амилаза и мальтаза слюны инактивируются. Последующее расщепление углеводов осуществляется ферментами сока поджелудочной железы при переходе химуса в тонкую кишку.

в физиологических условиях слюна является перенасыщенным раствором по содержанию кальция и фосфата.

Состояние перенасыщенности слюны имеет важное значение для сохранения и поддержания постоянства зубных тканей в полости рта, для обеспечения баланса минеральных компонентов. Перенасыщенность слюны солями кальция и фосфата, с одной стороны, препятствует растворению эмали, так как слюна уже перенасыщена составляющими эмаль компонентами; с другой стороны, способствует диффузии в эмаль ионов кальция и фосфата, поскольку их активная концентрация в слюне значительно превышает таковую в эмали, а состояние перенасыщенности способствует их адсорбции на эмаль.

Минерализующая роль слюны многократно доказана в эксперименте и клинике, особенно в исследованиях с радиоактивными изотопами. Показано, что процессы "созревания" эмали обеспечиваются прежде всего за счет активного поступления ионов кальция, фосфора фтора из слюны.

Согласно данным исследований М. В. Галиулиной, В. К. Леонтьева (1990), слюна является структурированной коллоидной системой, так как в ее состав входят муцин и другие поверхностно-активные вещества.

Следовательно, задачей местной профилактики является поддержание минерализующей функции слюны на оптимальном уровне путем насыщения ее ионами кальция, фосфата, фтора из средств профилактики. При этом важным фактором является поддержание рН слюны в пределах физиологических колебаний, чему способствует рациональная гигиена полости рта, ограничение приема углеводов.

  1. ^ Состав десневой жидкости, изменения его при воспалении слюнных желез, гингивите, периодонтите.

Десневая жидкость является физиологической средой организма сложного состава, включающей в себя лейкоциты, спущенные эпителиальные клетки, микро¬организмы, электролиты, белковые компоненты и ферменты.

1. Лейкоциты.

Наличие лейкоцитов в десневой борозде имеет большое значение в физиоло¬гии полости рта, так как десневая борозда является основным источником поступ¬ления лейкоцитов в слюну.

Эмиграция лейкоцитов в полость рта имеет возрастной характер, так, у де¬тей до прорезывания зубов лейкоциты в слюне практически отсутствуют. Они по¬являются с началом прорезывания зубов и с прорезыванием всех зубов эмиграция достигает уровня эмиграции лейкоцитов взрослых. В более позднем возрасте с умень¬шением числа зубов количество лейкоцитов в слюне уменьшается. У стариков с беззубой челюстью эмиграция лейкоцитов значительно снижена.

При интактном пародонте у взрослых в десневой жидкости содержится 95-97% нейтрофилов, 1-2% лимфоцитов. 2-3% моноцитов. Среди мононуклеарных лей¬коцитов 24% приходиться на Т-лимфоциты и 58% - на В-лим4юциты. При воспале¬нии процентное соотношение нейтрофилов. лимфоцитов и моноцитов остается без изменений, но увеличивается абсолютное число этих клеток.

Увеличение числа лейкоцитов в десневой жидкости и слюне находиться в прямой зависимости от степени выраженности воспалительной реакции в тканях пародонта. Число эмигрировавших в полость рта лейкоцитов при хроническом воспалении в тканях пародонта увеличивается в 2 раза. а при обострении процесса в 4 раза по сравнению со здоровыми людьми. Ухудшение гигиены полости рта так¬же способствует увеличению количества лейкоцитов.

Большое значение лейкоцитам десневой жидкости придается как источнику лизосомальных ферментов (лизоцим, кислая и щелочная фосфотазы), которые име¬ют определенное значение в патогенезе заболеваний пародонта.

2. Эпителиальные клетки.

Десневая жидкость здоровых людей содержит спущенные эпителиальные клетки. При воспалении число спущенных эпителиальных клеток увеличивается, что связано с изменениями метаболизма межклеточного вещества и с увеличением митотической активности эпителия десны при воспалении. Спущенные эпители¬альные клетки могут адсорбироваться на поверхности зуба и способствовать на¬чальной колонизации бактерий при образовании зубного налета.

3. Микроорганизмы десневой жидкости.

Десневая жидкость в норме не стерильна. Постоянными представителями микрофлоры содержимого десневых борозд являются стрептококки и стафилокок¬ки, фузобактерии, спирохеты и простейшие. Однако при патологии пародонта уве¬личивается их количество, изменяется их видовой состав и повышается их патогенность.

При наличии воспаления в пародонте микроорганизмы, выделяемые из дес¬невой жидкости и зубного поддесневого налета схожи. Наличие кальция и фосфатов имеет значение для образования зубной бляшки.

4. Белковые компоненты десневой жидкости.

Белковый состав десневой жидкости и сыворотки крови одинаков. Содержа¬ние общего белка в десневой жидкости в среднем составляет 6.1 - 6.8 г/100 мл.

В десневой жидкости содержатся альбумины, глобулины, система комплемента. Существует мнение о том, что глобуллины и фибрин могут спо¬собствовать плотному соединению эпителия десны с эмалью, образуя клейкую плен¬ку и обеспечивая адгезию клеток зубо-эпителиального прикрепления к поверхнос¬ти чуба.

Десневая жидкость является важным источником ряда иммуноглобулинов, антител для полости рта. Их концентрация в десневой жидкости и крови одинакова.

1. Ферменты.

Имеется тесная взаимосвязь между степенью нарастания воспалительных изменений в пародонте и уровнем активности лизоцима, гиалуроронидазы, эластазы, катепсинов, фосфотаз, лактатдегидрогеназ и других ферментов.

Ранние патохимическне изменения в метаболизме тканей пародопта при вос¬палении сводятся прежде всего к нарушениям в обмене коллагена, характеризую¬щимися ее убылью. Около 50% объема соединительной ткани десны и 90% орга¬нической фракции альвеолярной кости представлено коллагеном, который играет большую роль в поддержании структурных и функциональных свойств пародонта.

В физиологических условиях коллаген резистентен к действию протеолнтических ферментов тканевого и микробного происхождения. Основным ферментом, способным расщеплять нативный коллаген является коллагеназа. Интересен факт, что уровень коллагеназной активности при гингивите практически не отличается от уровня активности того фермента в ннтактных тканях пародонта. При пародонтите наблюдается высокая коллагенолитическая активность десневой жидко¬сти, когда как при пародонтозе она незначительна.

6. Количество десневой жидкости.

В течение суток в полость рта поступает от 0.5 до 2,4 мл десневой жидкости. По сравнению с ннтактным пародонтом, при хроническом катаральном гингивите количество десневой жидкости выше в 4.6 раза, пародонтите - 10.5 раза. Пародонтоз также характеризует¬ся более высокими количественными показателями десневой жидкости, которые превышают уровень ее выделения по сравнению с интактным пародонтом в 1.8 раза.

Предложено несколько способов получения десневой жидкости. Наиболее широкое распространение в клинике получил внутробороздковой метод забора десневой жидкости с помощью полосок фильтровальной бумаги. Количество десневой жидкости определяют путем взвешивания бумажных полосок или путем измерения плошади пропитывания.

  1. ^ Факторы, способствующие развитию зубного налета и зубного камня. Состав зубного налета и зубного камня.

Зубной налет – это скопление микроорганизмов и продуктов их жизнедеятельности. Он начинает накапливаться уже после 2ч. После чистки зубов. В 1мг находится около 500 000 000 микробов. В первые 24ч. преобладает кокковая инфекция, после 24ч – палочковидные бактерии, через 2 суток – нитевидные бактерии. Без микроорганизмов зубной налет не образуется. Наиболее важную роль в развитии кариеса играет Str. mutan, т.к. они активно формируют зубной налет.

Состав зубного налета: вода (78-80%); белок (9,6-12,7%); углеводы (6,9-7,7%): глюкоза 3%, сахароза 2,5%, полисахариды 10% (леван, декстран, сиаловые кислоты); липиды (фосфолипиды, холестерол); ионы P, Ca, Na, K, Mn, Fe (меньше, чем в слюне); ферменты (более 50 микробного происхождения): сульфатаза – приводит к разрушению органического каркаса эмали, дентина, коллагеназа, протеазы – гидролизуют коллаген десен и кости альвеолярного отростка, гиалуронидаза – расщепляет гиалуроновую кислоту (основное межклеточное вещество соединительной ткани), эластаза – разрушает эластин сосудистой стенки, вызывая кровотечения, нейроминедаза – разрушает сиаловые кислоты пелликулы, расщепляет гликопротеины слюны, участвует в полимеризации сахарозы.

Содержание фтора в зубном налете может в 10-100 раз превышать его содержание в слюне. Он включается в состав зубного налета из пищи, воды, слюны, но может поступать и из эмали зуба при снижении рН зубного налета и активации процессов деминерализации эмали. С возрастом содержание фтора в зубном налете увеличивается.

Основу матрикса зубного зубного налета составляют гликопротеины слюны. Под действием ферментов бактерий синтезируются липкие полимеры, такие как декстран, леван. Происходит адгезия бактерий, фиксация на поверхности зуба.

При большом употреблении углеводной пищи (сахароза) под действием ферментов микроорганизмов зубного налета увеличивается кислотообразование. Образуются органические кислоты: молочная, ПВК. Они при отложении зубного налета растворяют межпризматическое вещество эмали, образуя микрополости, которые заполняются бактериями. Происходит повышение процессов декальцинации над реминерализацией.

Расщепление азотсодержащих остатков пищи различными ферментами микроорганизмов зубного налета ведет к образованию продуктов щелочного характера, способствующие осаждению в органическом матриксе зубного налета фосфатов кальция из слюны и жидкости десневого кармана с образованием зубного камня.

^ Зубной камень.

Зубной камень возникает в результате осаждения из слюны солей – фосфатов и карбонатов кальция и магния в органическую матрицу зубного налета. Зубной камень так же можно рассматривать как минерализованную зубную бляшку, прикрепленную к эмали в области поверхности корня зуба. Различают наддесневые и поддесневые зубные камни.

Химический состав:

- кальций - 21-29%;

- фосфор – 12-16%;

- элементы: магний, натрий, железо, кремний, алюминий, цинк и др.

- все виды аминокислот, но больше всего глютаминовой, аспарагиновой,

глицина, аланина, валина, лейцина;

- углеводы - 19% (глюкоза, галактоза, арабиноза, гликозаминогликаны,

галактозамин, глюкуроновая кислота);

- липиды – фосфолипиды, холестерол, ди- и триглицерины, свободные

жирные кислоты.

Зубной камень имеет слоистую структуру. Его образованию способствует снижение коллоидоустойчивое состояние слюны при смещении ее рН в щелочную сторону в связи с накоплением аммиака и потерей углекислого газа.

Зубной камень играет важную роль в патогенезе болезней - пародонта. На шероховатой поверхности зубного камня задерживаются остатки пищи, эпителий, микроорганизмы. Токсины, выделяемые ими, оказывают раздражающее действие на десну и способствуют развитию воспаления – гингивита. Зубной камень механически действует на десну, оттесняя ее от шейки зуба, что приводит к изъязвлению десны, увеличению десневого кармана и изменению химического состава десневой жидкости. Это способствует активации процессов отложения зубного камня, следовательно, усилению воспаления, т.е. образуется прочный круг, ведущий к гибели тканей пародонта, расшатыванию и выпадению зубов.


  1. ^ Химический состав и функции костной ткани, особенности метаболизма.

Костная ткань - это особый вид соединительной ткани, включающий компоненты органической и неорганической природы, выполняющий функцию депо Са (99%). Костная ткань имеет особенности строения, которые не встречаются в других видах соединительной ткани. Основные особенности кости - твердость, упругость, механическая прочность.

Состоит из клеток и костного матрикса (межклеточного вещества). Костный матрикс составляет 50% сухого "веса и состоит из неорганической (50%) и органической (25%) частей и Н2О (25%).

^ Неорганическая часть в значительном количестве содержит Са (25%) и Р (50%), образующие кристаллы гидроксиапатита, а также другие компоненты: бикарбонаты, цитраты, соли Mg2+, K+, Na+ и др.

^ Органическая часть образована коллагеном, неколлагеновыми белками, гликозаминогликанами (хондроитинсульфат, кератан-сульфат).

Собственно костные неколлагеновые белки представлены сиалопротеинами, протеогликанами, фосфопротеинами и сложным белком, содержащим углеводный компонент и ортофосфат. От правильного набора матриксных белков, особенностей строения, а также специфического аминокислотного состава зависит отложение гидроксиапатита, создавая необходимую концентрацию Са для процесса минерализации.

Сиалопротеины имеют молекулярную массу 70000. 50% - это углеводы, 12% -сиаловая кислота. Большинство углеводов - это олигосахариды (фруктоза, галактоза, глюкоза, манноза, пентоза, галактозамин). До 30% серина и другие аминокислоты: аспарагиновая и глутаминовая, ковалентно связанные с фосфатом. Присутствие этого белка обеспечивает:

- клеточное прикрепление;

- связывание катионов.

Неколлагеновых белков в костной ткани около 200, они составляют 3-5% от ее массы или 15-17% от массы ее деминерализованного и высушенного внеклеточного органического матрикса. Все они участвуют в процессах обеспечения гистогенеза, самоподдержания, иммунологические свойства на протяжении всей жизни и репарации костной ткани.

^ Кальций-связывающие белки костной ткани.

Остеонектин - молекулярная масса 32 кДа. Он имеет кальций-связывающие участки, образованные сиаловыми кислотами и ортофосфатом, придающие возможность взаимодействия с коллагеном и избирательно с гидроксиапатитом. Он поддерживает в присутствии коллагена осаждение Са и РО4 3-.

Остеопонтин - молярная масса 41,5 кДа, богат дикарбоновыми аминокислотами и фосфосерином, 30 остатков моносахаридов, 10 остатков сиаловых кислот. Он способен фиксировать остеобласты в участках физиологического и репаративного костеобразования. Его синтез резко возрастает во время трансформации вирусов.

Остеокалъцин - это гла-содержащий протеин.

Дело в том, что костная, как и другие ткани, содержит белки, которые подвергаются посттрансляционной модификации с помощью витамин К-зависимых ферментов, в результате чего образуются остатки у-карбоксилглутаминовой кислоты (gla). Модифицированная таким образом аминокислота придает белкам способность связывать Са2+ с помощью расположенных по соседству карбоксильных групп. Молекула этого белка состоит из 49 аминокислотных остатков (в 17-ом, 21-ом, 24-ом положениях - остатки у-карбоксилглутаминовой кислоты). Роль их - связывать кристаллы гидроксиапатита и тем самым способствовать их накоплению в ткани.

Синтез остеокальцина зависит не только от витамина К, но и D, что подчеркивает его связь с процессом минерализации.

gla-протеин-матрикса (молекулярная масса - 15000 ). Он сохраняется в матриксе кости после деминерализации, в отличие от остеокальцина, который легко экстрагируется в этот период. Остатков у-карбоксилглутаминовой кислоты до шести. Он связывает минеральные кристаллы и легко растворимый в воде костный морфогенетический белок, доставляя его к клеткам-мишеням.

Протеин-S - синтезируется в печени, участие в метаболизме костной ткани доказывается фактом изменения скелета у пациентов с дефицитом этого белка. Но, еще не ясно, каким типом клеток костной ткани он синтезируется.

Протеогликаны - класс сложных соединений, состоящих из различных белков, содержащих олигосахариды, связанные с гликозаминогликанами (хондроитинсульфат, дерматансульфат, кератансульфат, гепарин). Среди них различают:

Большой хондроитинсульфатсодержащий протеогликан. Предполагается, что этот протеогликан «захватывает пространство», которое должно стать костью, благодаря большому содержанию сульфата, в гидратированном состоянии способен занимать значительный объем пространства.

^ Декорин и бигликан очень сходны по строению, соответственно имеют один или два гликозаминогликана, белковая часть содержит 24 аминокислотных остатка, богатых лейцином. Несмотря на биохимическое сходство, эти белки отличаются по локализации. Локализация более распространенного декорина совпадает с расположением коллагена, что соответствует его функции «отделывать» молекулы коллагена и регулировать диаметр фибрилл. Бигликан сохраняется в матриксе.

К настоящему времени выделено много других типов протеогликанов, но это в основном белки клеточной поверхности, роль которых мало изучена.

На долю альбумина приходится большая часть неколлагеновых белков. По иммунологическим свойствам идентичен сывороточному.

Углеводы играют огромную роль в жизнедеятельности костной ткани, в процессах ее образования. На долю гликогена приходится 50-80мкг на 1г влажной ткани. Присутствие гликогена - необходимое условие процесса минерализации, он концентрируется главным образом на месте будущего центра минерализации. В костной ткани с большой интенсивностью протекают процессы гликолиза и пентозофосфатного пути.

Уровень нуклеиновых кислот зависит от функциональной активности. В покоящихся остеобластах количество РНК невелико, тогда как в пролиферирующих и гипертрофированных клетках повышено. Отмечено снижение содержания РНК при превращении остеобластов в остеоциты. ДНК находится в ядрах преостеобластов, остеобластов и остеокластов. Высокое содержание РНК отражает их активную и постоянную биосинтетическую функцию: образование большей массы костного матрикса.

Липиды играют важную роль в процессе минерализации и транспорта ионов через мембраны. Преобладают полярные липиды: фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин. Всего 0,61% липидов на сухую массу ткани.

Основная органическая кислота, находящаяся в костной ткани - цитрат. Её содержание в 230 раз превышает концентрацию в печени и достигает 90%. Активность цитратсинтетазы значительно выше активности ферментов, принимающих участие в распаде лимонной кислоты, а она, накапливаясь, принимает участие в регуляции уровня Са в сыворотке крови. Причем лимонная кислота находится в двух формах:

1. растворимой - принимает участие в цикле трикарбоновых кислот;

2. нерастворимой - неактивной, входящей в состав минерального компонента костной ткани.

В костной ткани активно преобладают метаболические процессы. Характерная особенность - аэробный гликолиз. Потребление глюкозы как в аэробных, так и в анаэробных условиях остеогенными клетками значительно больше, чем клетками печени, мышц и других органов.

Структура и функции костной ткани поддерживаются специфическими ферментами, синтезирующими и расщепляющими макромолекулярные компоненты органического матрикса кости и ферментами общих метаболических путей, снабжающих костные клетки энергией. Ферментам принадлежит важная роль в процессах минерализации и резорбции кости.

Следует отметить специфическую локализацию ферментов. В остеокластах проявляется более высокая активность дегидрогеназ, кислой фосфатазы, аминопептидазы, по сравнению с другими клетками. В то же время остеокласты не содержат щелочной фосфатазы. Высокая активность аденилатциклазы, пируваткиназы, фосфотрансфераз в зонах роста, где протекают процессы кальцификации.

Активность окислительных ферментов, таких как цитохромоксидаза, каталаза значительно ниже, чем, например, печени. Щелочная фосфатаза локализованная главным образом в остеобластах, в остеокластах вообще не обнаружена. Содержание этого фермента и его активность резко повышается в определенные сроки переломов кости, рахите и других патологий.

Кислая фосфатаза сосредоточена в остеокластах. Она непосредственно участвует в резорбции кости, осуществляя расщепление органических эфиров фосфорной кислоты с освобождением фосфатных ионов. Таким образом, кислая фосфатаза - лизосомный фермент и ее главная функция заключается в катаболизме, тогда как щелочная - принимает участие в процессах минерализации.

Основной белок костной ткани - коллаген, который содержится в количестве 15% - в компактном веществе, 24% - в губчатом веществе.

Костный коллаген - коллаген I типа - в нем больше, чем в других видах коллагена, содержится оксипролина, лизина и оксилизина, отрицательно заряженных аминокислот, с остатками серина связано много фосфата, поэтому костный коллаген - это фосфопротеин. Благодаря своим особенностям костный коллаген принимает активное участие в минерализации костной ткани.

В процессе жизнедеятельности костной ткани между ее компонентами и неорганическими ионами плазмы крови постоянно осуществляется обмен.

Костная ткань является депо минеральных компонентов, буферной системой, участвующей в поддержании концентрации ряда ионов. Она быстро поглощает из крови введенный Са, также быстро, за короткое время содержание Са в ней уменьшается на 20%.в костной ткани обнаруживаются различные соединения Са: кальцийфосфат, карбонат кальция, соединения с Cl, F.




Структура решетки неорганических кристаллов кости соответствует структуре кристаллов гидроксиапатита Ca10(PO4)6(OH)2 - это часть минеральной фазы кости, другая часть представлена аморфным фосфатом кальция. Он представляет плотную некристаллическую субстанцию в виде аморфных гранул, имеющих вид овалов или кругов, диаметром 5,0-20,0 нм. Является важным компонентом костной ткани, и его присутствие не зависит от анатомического строения кости, но подвержено значительным колебаниям в зависимости от возраста. Эта фаза преобладает в раннем возрасте, в зрелой же кости преобладающим становится кристаллический гидроксиапатит. Образование костной соли отражается общим уравнением:

5Ca2+ + 3HPO42- +4OH- → Ca5(PO4)3OH + 3H2O

Растворению костной ткани способствует локальное повышение кислотности среды. При небольшом повышении содержания протонов водорода кость начинает растворяться, отдавая вначале катионы кальция:

Ca5(PO4)3OH + 2Н+ → Ca4Н(PO4)3 + Ca2+ + H2O

При большей кислотности среды происходит полный ее распад:

Ca5(PO4)3OH + 7Н+ → 3Н 2PO4- + 5Ca2+ + H2O

Гидролиз аморфного кальцийфосфата обеспечивает постоянную концентрацию кальция в интерстициальной жидкости костной ткани.

В настоящее время известно более 30 микроэлементов: Си, Sr, Zn, Ba, Al, Be, Si, F и другие. Они необходимы для жизнедеятельности отеогенных клеток в процессе оссификации и декальцинации.

Обызвествление костной ткани и ее декальцинации находятся в тесной зависимости от содержания микроэлементов. Так, Sr и V способствуют обызвествлению, a Zn и Ва участвуют в регуляции процесса декальцинации. Mg активирует ряд ферментов, в частности, щелочную фосфатазу, участвующую в процессе минерализации.

Особого внимания заслуживает Sr. Его химические свойства близки к Са. Sr конкурирует с Са за место в кристаллической решетке, однако Sr удерживается в меньшей степени, чем Са, в том случае, если в рационе преобладает Са. При дефиците же Са в рационе Sr поглощается организмом в значительно больших количествах, чем в норме. Длительное поступление избыточных количеств Sr ведет к замещению им ионов Са в кристаллической решетке гидроксиапатита, в результате чего кости деминерализуются и деформируются.

В зрелом организме процессы минерализации и резорбция кости находятся в состоянии динамического равновесия. Минерализация - это формирование кристаллических структур минеральных солей костной ткани. Активное участие в минерализации принимают остеобласты. Для минерализации требуется много энергии (в форме АТФ), регулируемой многими факторами, включая ферменты, гормоны, витамины.

Решительный поворот в изучении минерализации начался с 1923г., вскоре после открытия в костной ткани фермента щелочной фосфатазы. Английский биохимик Р.Робинсон высказал предложение, что фосфорнокислый кальций откладывается там, где действует этот фермент. Однако щелочная фосфатаза содержится во многих тканях, не подвергающихся минерализации, и для того, чтобы произошло обызвествление необходимы другие факторы.

Позднее было доказано участие многих факторов: гликогена, ферментов гликолиза, АТФ, ЦТК, гликозаминогликанов.

Для приведенных всех теорий и некоторых экспериментальных данных общим является представление о ведущей роли ферментов, отщепляющий неорганический фосфат от органического субстрата. Концентрация фосфата в участках функционирования этих ферментов повышается, достигая уровня, при котором начинается его самопроизвольное осаждение, приводящее к кристаллизации.

Дальнейшие исследования позволили предположить, что процесс кальцификации состоит в очаговом образовании центров кристаллизации гидроксиапатита из растворов Р и Са под действием коллагеновых волокон, в которых необходимо специфическое взаиморасположение реакционноспособных групп боковых аминокислотных цепей, способных служить центрами кристаллизации.

Важную роль в минерализации выполняют гликозаминогликаны, в частности хондроитинсульфат, которые обладают повышенным сродством к ионам Са и Р. подтверждением служат экспериментальные данные, демонстрирующие, что гликозаминогликаны интенсивно секретируются остеобластами в зоне минерализации, а затем подвергаются действию лизосомальных ферментов, образуя высокоактивные ионы.

Биохимическую основу нуклеации первичных зародышевых кристаллов составляет реакция образования комплекса между коллагеном, АТФ, Са и хондроитинсульфатом. К факторам, контролирующим кристаллообразование на волокнах коллагена относится также пирофосфат, который ингибирует минерализацию. Доказана также роль в этом процессе фосфолипидов, без которых органический матрикс костной ткани утрачивает способность обызвествляться.


  1. ^ Коллагеновые и неколлагеновые белки костной ткани, роль в процессах минерализации.

1-й ЭТАП: остеобласты начинают синтезировать костный коллаген, который содержит фосфаты и формирует хондроитинсульфаты. Костный коллаген является матрицей для процесса минерализации. Особенностью процесса минерализации является перенасыщение среды ионами кальция и фосфора. На 1 этапе минерализации кальций и фосфор связываются с костным коллагеном. Обязательный участник процесса - сложные липиды.

2-й ЭТАП - в зоне минерализации усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция. Одновременно из лизосом остеобластов выделяются кислые гидролазы, которые взаимодействуют с белками органического компонента и приводят к образованию ионов аммония и гидроксид-ионов, которые соединены с фосфатом. Так формируются ядра кристаллизации. Ионы кальция и фосфора, которые были связаны с белково-углеводным комплексом, переходят в растворимое состояние и формируют кристаллы гидроксиапатита. По мере роста кристаллы гидроксиапатита вытесняют протеогликаны и даже воду до такой степени, что плотная ткань становится практически обезвоженной. Ингибитор процесса минерализации - неорганический пирофосфат. Его накопление в кости может препятствовать росту кристаллов. Чтобы этого не происходило, в остеобластах есть щелочная фосфатаза, которая расщепляет пирофосфат на два фосфатных остатка.

При нарушении процессов минерализации - например, при заболевании оссифицирующим миозитом - кристаллы гидроксиапатита могут появлятся в сухожилиях, связках, стенках сосудов. Вместо кальция в костную ткань могут включаться другие элементы - стронций, магний, железо, уран и т.д. После формирования гидроксилапатита такое включение уже не происходит. На поверхности кристаллов может накапливаться много натрия в форме цитрата натрия. Кость выполняет функции лабильного (изменчивого) депо натрия, который выделяется из кости при ацидозе и, наоборот, при избытке поступления натрия с пищей, чтобы предотвратить алкалоз - натрий депонируется в кости. В ходе роста и развития организма количество аморфного фосфата кальция уменьшается, потому что кальций связывается с гидроксиапатитом.


  1. ^ Особенности химического состава эмали зуба, пути поступления веществ в эмаль зубов. Роль ионов фтора в поддержании здоровья эмали.

Является самой твердой тканью зуба. По твердости ее, нередко, сравнивают с кварцем. Твердость эмали 398 кг/мм2. Это обусловливается высоким содержанием в ней минеральных солей.
  1   2   3

Похожие:

Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны icon2 влияние ксенобиотиков на физико-химические свойства цитоплазмы
С физико-химической точки зрения протоплазму можно рассматривать как сложную колло­идную систему, обладающую всеми свойствами и признаками...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconПеречень вопросов к экзамену
Физико-химические свойства смазочных материалов, применяемых в сэу. Браковочные параметры масел
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconТема: Физико-химические основы внутриконтурных процессов в яэу
Физико-химические характеристики водно-паровых сред аэс. Зависимость плотности и диэлектрической проницаемости от температуры. Зависимость...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconОбъем и физико-химические свойства крови
Большой круг начинается в левом желудочке и заканчивается в правом предсердии, малый начинается в правом желудочке и заканчивается...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconС. В. Федченко «Ядовитые технические жидкости»
Физико-химические и токсические свойства метилового спирта, этиленгликоля, дихлорэтана, гидразина и его производных, тетраэтилсвинца...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны icon28. Пищевар в полости рта
Симпатическая иннерва­ция слюнных желез осуществляется от боковых у рогов II-IV грудных сегментов спинного мозга. В окончаниях постганглионарных...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconА (первые 4 вопроса в билетах, максимум – 5 баллов за каждый)
Классификация аминокислот. Физико-химические свойства и стереоизомерия аминокислот
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconСтруктура амилазы слюнных желез. Катион кальция показан жёлтым цветом, анион
Структура амилазы слюнных желез. Катион кальция показан жёлтым цветом, анион хлора зелёным
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconФизико химические и качественные свойства бензина
Отечественные легковые автомобили и автобусы, а также большинство грузовых автомобилей имеют карбюраторные двигатели. Топливом для...
Слюна как секрет слюнных желез, суточный объем, физико-химические свойства, функциональное предназначение слюны iconФизиология крови. Физико-химические свойства крови
У больного 46 лет, поступившего в гематологическое отделение, выяв­лено нарушение процессов гранулоцитопоэза и тромбоцитопоэза. В...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница