Морфология бактерий. Общие вопросы


Скачать 302.03 Kb.
НазваниеМорфология бактерий. Общие вопросы
страница1/3
Дата публикации01.05.2013
Размер302.03 Kb.
ТипДокументы
userdocs.ru > Биология > Документы
  1   2   3
Морфология бактерий. Общие вопросы.

Ультраструктура бактериальной клетки  

* - мишени (точки приложения) для антибактериальных антибиотиков
 
Бактерии – представители доминиона Bacteria – одноклеточные организмы, имеющие прокариотический тип клеточной организации  (см. рис. 1). Обязательными элементами клетки (любой клетки, в т.ч. клетки прокариотического типа) являются :       

  • - Цитоплазма

  • - Внутриклеточные органеллы

  • - Цитоплазматическая мембрана (ЦПМ)

Особенности ультраструктурной организации клетки прокариотического типа: 

  • Отсутствует компартментализация цитоплазмы, т.е. разделение цитоплазмы на функциональные отсеки (компартменты) с помощью внутриклеточных мембран (т.о., отсутствуют мембранные органеллы, в т.ч. и ядро)

  • Отсутствует полноценный цитоскелет

  • Отсутствует хроматин, т.е. отсутствует типичная упаковка генетического материала клетки (ДНК) в нуклеосомы с помощью белков гистонов.  

^ Характеристика ультраструктурных компонентов бактериальной клетки:

Цитоплазма (гиалоплазма, цитозоль) – внутренняя среда клетки, представляет собой сложную коллоидную систему, содержащую разнообразные растворимые неорганические (фосфаты, сульфаты, хлориды, карбонаты etc., катионы одно- и двухвалентных металлов Na + , K + , Ca 2+ , Mg 2+ , Cu 2+ , Fe 2+ , Zn 2+ etc.) и органические низкомолекулярные (углеводы, органические кислоты, аминокислоты, азотистые основания etc.) и высокомолекулярные (белки, нуклеиновые кислоты etc.) соединения в виде истинных и/или коллоидных растворов и характеризующуюся постоянством основных физико-химических параметров, как то: осмолярность, рН, ионная сила и т.д.
^ Функция цитоплазмы : обеспечивает оптимальные условия для протекания внутриклеточных биохимических реакций и всех процессов жизнедеятельности клетки.  

Внутриклеточные органеллы

Нуклеоид – подобие ядра – область цитоплазмы бактериальной клетки, занятая генетическим материалом. Генетический материал у бактерий представлен двухцепочечной молекулой ДНК (дцДНК). Нуклеоид представляет собою совокупность всех молекул ДНК, присутствующих в клетке.
У большинства бактерий генетический материал представлен кольцевыми ковалентно замкнутыми  суперспирализованными  (т.е. многократно закрученными вокруг своей оси молекулами ДНК.
Состояние суперспирализации является динамическим и обеспечивается работой ферментов, относящихся к классу топоизомераз . В каждой бактериальной клетке присутствуют топоизомеразы нескольких типов, различающиеся по функциям и конечному эффекту на топологию (т.е. третичную структуру) ДНК.
Третичная структура нуклеоида дополнительно стабилизируется при участии минорных (присутствующих в малом   количестве) ДНК-связывающих «гистоноподобных» белков. (Следует особо обратить внимание и запомнить, что бактериальные гистоноподобные белки имеют мало общего с гистонами эукариот!)
Подобно тому, как эукариотический хроматин в зависимости от плотности упаковки подразделяется на рыхло упакованный эухроматин и плотно упакованный гетерохроматин, бактериальный нуклеоид содержит как плотно закрученные участки с большим числом положительных супервитков, так и частично раскрученные (т.е. деспирализованные) участки, содержащие отрицательные супервитки. Эти участки доступны для ферментов транскрипции, и в их составе располагаются активно работающие гены. Наибольшее практическое значение имеют топоизомеразы, отвечающие за отрицательную суперспирализацию (частичное раскручивание) участков ДНК (т.е. вносящие отрицательные супервитки). К их числу относятся ДНК-гираза*  (состоит из субъединиц А и В) и топоизомераза IV *. Нарушение работы этих ферментов блокирует процесс транскрипции, а также и репликации ДНК, что приводит к остановке роста и размножения бактерии.   Функция нуклеоида : хранение, воспроизведение и реализация генетической информации.  

Рибосомы* – рибонуклеопротеидные частицы с константой седиментации 70S , состоят из 2-х субъединиц, имеющих константы седиментации 30S (малая) и 50S (большая). Бактериальная рибосома отличается по количественному и качественному составу белков и рибосомальных РНК (рРНК) от рибосомы эукариотического типа. В оптимальных условиях роста бактериальная клетка содержит 10.000 – 20.000 рибосом.
^ Функция рибосом :
Основная
: трансляция (матричный процесс биосинтеза белков). Дополнительная: синтез регуляторных молекул в ответ на голодание.  

Включения – гранулы, представляющие собой запас питательных веществ в пригодной для длительного хранения форме, т.е. обычно в виде инертных полимеров: органических (крахмал, гликоген, нейтральные липиды и др.) или неорганических (полифосфаты и др.). Могут достигать размеров, видимых в световой микроскоп, т.е. превышать 0.2 мкм в диаметре. [Включения полифосфатов («зерна волютина») выявляют с помощью окраски по методу Нейссера.]  

Элементы цитоскелета
. С внутренней поверхностью ЦПМ бактериальной клетки связаны сократительные белки нескольких типов, участвующие в пространственном распределении и разделении структурных элементов клетки, а также в процессе деления и, возможно, внутриклеточного транспорта.
Поверхностный аппарат не является обязательным для бактериальной клетки.          

  • Поверхностный аппарат и отдельные его элементы могут эволюционно отсутствовать у определенных групп бактерий.          

  • Бактерии способны утрачивать или приобретать те или элементы поверхностного аппарата в зависимости от условий существования.  

К элементам поверхностного аппарата бактериальной клетки относятся:

  • Клеточная стенка

  • S-слой

  • Капсула и капсулоподобные оболочки

  • Жгутики

  • Реснички (пили) = ворсинки (фимбрии)



Периплазматическое пространство : метаболически активная область между ЦПМ и клеточной стенкой (см. схемы на рис. 6 и 13 , электронограммы рис.8,9 и 14-16 ), отличная по физико-химическим свойствам и химическому составу от внешней среды и содержащая ряд ферментов (гидролитических и синтетических) и шаперонов, участвующих в формировании нативной конформации белков (структурных, транспортных, экзоферментов, экзотоксинов и проч.), функционирующих вне цитоплазмы, в т.ч. и во внешней среде.  
^ Функции периплазматического пространства :
Синтетическая
/ функция эндоплазматической сети и комплекса Гольджи /: пост-трансляционная модификация (созревание) белков и других макромолекул, в т.ч. компонентов клеточной стенки.  
Пищеварительная
/ функция лизосомы /: содержит гидролитические ферменты, участвующие в расщеплении олигомеров до мономеров в процессе питания.  


Клеточная стенка : защитная оболочка, покрывающая бактериальную клетки снаружи.
NB !!! Представители класса Mollicutes не имеют клеточной стенки (эволюционно закрепленный признак).  
В зависимости от особенностей организации клеточной стенки  выделают 3 типа бактерий:
Фирмикутные
[ firmus лат. жесткий] (при окраске по методу К. Грама приобретают темно-пурпурный/фиолетовый цвет, т.е. грам-положительные) имеют толстую и жесткую клеточную стенку, характеризующуюся повышенной механической прочностью, но достаточно проницаемую для малых молекул и, т.о., НЕ являющуюся барьером для низкомолекулярных соединений (см. рис. 6-8 ).
Грациликутные [ gracilis лат. нежный] (при окраске по методу К. Грама приобретают розово-сиреневый цвет, т.е. грам-отрицательные) имеют сравнительно тонкую и относительно непрочную клеточную стенку (см. рис.10-15), более чувствительную к механическим воздействиям, но характеризующуюся низкой проницаемостью для многих малых молекул, в первую очередь, гидрофобных, включая и многие антибиотики (пенициллин и др.).
Кислотоустойчивые
(по методу К. Грама не окрашиваются, при окраске по методу Циля-Нильсена приобретают красный/малиновый цвет) имеют клеточную стенку, отличающуюся значительной толщиной и механической прочностью (рис.17,18) и одновременно крайне низкой проницаемостью для малых молекул, в том числе большинства существующих антибиотиков.
Клеточная стенка фирмикутных бактерий

представлена толстым (~50 нм) слоем пептидогликана , пронизанного тейхоевыми и липотейхоевыми кислотами, а также включает белки клеточной стенки, расположенные преимущественно на ее поверхности (см. схемы рис. 6 и 7 ).

Пептидогликан
(муреин): сложный полимер, имеющий трехмерную структуру и представляющий собой «ткань» (см. рис. 10 ), в составе которой линейные полисахаридные цепи «сшиты» между собой олигопептидами. Линейные полисахаридные цепи представлены чередующимися гексозными остатками (N -ацетил-глюкозамин и N -ацетил-мурамовая кислота), соединенными β-гликозидными связями (являются субстратом фермента лизоцима). К каждому остатку N -ацетил-мурамовой кислоты  присоединен олигопептид (тетрапептид ), включающий несколько уникальных аминокислот, в т.ч. D -изомер аланина  (см. рис. 11 и 12). Ковалентное связывание тетрапептидов соседних цепей приводит к образованию поперечных пептидных мостиков/сшивок. В результате формируется сплошной жесткий каркас /«корсет»/, окружающий клетку со всех сторон. Процесс образования поперечных пептидных мостиков осуществляется с помощью ферментов транспептидаз и карбоксипептидаз, располагающихся в периплазматическом пространстве и отвечающих за образование пептидной связи между аминокислотными остатками тетрапептидов соседних полисахаридных цепей. Каждая бактерия имеет набор из транспептидаз и карбоксипептидаз нескольких типов, в т.ч. латеральных  (функционируют на «условно» боковых поверхностях клетки), участвующих в синтезе пептидогликана при росте (увеличении размера) клетки, и терминальных , функционирующих в процессе деления и обеспечивающих образование перегородки между дочерними клетками.
Транспептидазы
и карбоксипептидазы клеточной стенки являются пенициллин-связывающими белками  (ПСБ ), т.к. они служат мишенью действия антибиотика пенициллина и всех родственных ему антибиотиков, относящихся к группе β-лактамов .
Для увеличения размера каркаса при росте бактериальной клетки требуется постоянно «разрезать» полисахаридные цепи пептидогликана и «вшивать» новые субъединицы. Этот процесс осуществляется с помощью ферментов пептидогликан-гидролаз, расположенных также в периплазматическом пространстве и известных под названием «аутолизины ». Сбалансированная работа транспептидазы / карбоксипептидаз и аутолизинов обеспечивает координированное увеличение размеров пептидогликанового каркаса, соответствующее увеличению биомассы клетки. В клеточной стенке фирмикутных бактерий пептидогликан многослоен (содержит более 40 слоев линейных полисахаридных цепочек, прошитых олигопептидными мостиками) и составляет примерно 50% массы клеточной стенки


Функции пептидогликана :

  • Определяет форму бактериальной клетки («наружный скелет»)

  • Придает клеточной стенке механическую прочность

  • Защищает от осмотического лизиса при попадании бактерии в среду с низкой осмолярностью (гипотонический раствор), в т.ч. в пресную воду.        

  • Является «молекулярным ситом»: служит непроницаемым барьером для макромолекул, но легко пропускает любые низкомолекулярные вещества. 


Свойства пептидогликана:

  • Общий антиген большинства бактерий

  • Маркер доминиона Bacteria для иммунной системы (паразит-ассоциированный молекулярный паттерн/шаблон

  • Эндотоксин  (фрагменты пептидогликана распознаются паттерн-распознающими рецепторами  (TLR-2, Nod , C3) и оказывают опосредованное токсическое действие на организм хозяина  


^ Тейхоевые кислоты : линейные полимеры многоатомных спиртов (глицерина или рибитола), содержащие разнообразные боковые радикалы. Состав боковых радикалов определяет уникальную структуру тейхоевой кислоты. Тейхоевые кислоты  пронизывают пептидогликан и выступают на поверхность клеточной стенки. Липотейхоевые кислоты : тейхоевые кислоты, ковалентно соединенные с фосфолипидами в составе ЦПМ (т.е. имеющие липидный якорь), пронизывающие пептидогликан и выступающие на поверхность клеточной стенки.

^ Функции тейхоевых и липотейхоевых кислот:

  • Адгезия : специфическое прилипание к поверхности другой бактерии, клеткам или молекулам межклеточного вещества в организме хозяина.          

  • Гидрофобные свойства поверхности и некоторое ограничение проницаемости клеточной стенки 

  • Придают клеточной стенке дополнительную механическую прочность. 


Свойства тейхоевых и липотейхоевых кислот

Индивидуальный антиген: определяет антигенную специфичность бактерии – видовую и/или характерную для данного биовара (серовара).          

  • Маркер фирмикутных бактерии для иммунной системы (паразит-ассоциированный молекулярный паттерн/шаблон) -          

  • Эндотоксины фирмикутных бактерий (распознаются паттерн-распознающими рецепторами  (TLR -1/6, C3) и оказывают опосредованное токсическое действие на организм хозяина


^ Белки клеточной стенки: пронизывают пептидогликан или располагаются на его поверхности

Функции белков клеточной стенки:    Адгезия: специфическое прилипание к поверхности 

А) другой бактерии (в частности, объединение бактерий в характерные группы, например, формирование возбудителем дифтерии Corynebacterium diphtheriae групп, напоминающих китайские иероглифы) = когезия.

Б) клеткам или молекулам межклеточного вещества в организме хозяина (например, фибронектин-связывающий белок (ФСБ), ламинин-связывающий белок (ЛСБ), белки-аналоги интегринов и др. на поверхности патогенных бактерий).
Свойства белков клеточной стенки
:       Индивидуальный антиген: определяет антигенную специфичность бактерии – видовую и/или характерную для данного биовара (серовара).
Организация и основные компоненты клеточной стенки грациликутных бактерий
Клеточная стенка грациликутных бактерий представлена тонким (2-5 нм) слоем пептидогликана , снаружи покрыта наружной мембраной клеточной стенки , с которой ковалентно связан липополисахарид (ЛПС), образующий на ее поверхности сплошной гидрофильный слой толщиной 20-30 нм. Периплазматическое пространство располагается между ЦПМ и наружной мембраной клеточной стенки ( рис.14-17 ), и в него полностью погружен пептидогликан (рис.15).
^ Пептидогликан (муреин): принципиально не отличается по химическому составу, строению, свойствам, функциям и метаболизму от пептидогликана фирмикутных бактерий. Представлен значительно меньшим количеством слоев (обычно, 2-3 слоя), составляет 1-3% от массы клеточной стенки. В процессе метаболизма пептидогликана у грациликутных бактерий принимают участие такие же ферменты (транспептидазы / карбоксипептидазы и пептидогликан-гидролазы (аутолизины) , как и у фирмикутных.  
^ Наружная мембрана клеточной стенки (НМКС). Имеет типичное строение элементарной мембраны. Особенности : в наружном листке бислоя значительная часть фосфолипидов замещена липидом А , присутствие которого стабилизирует мембрану, снижает ее текучесть /повышает вязкость/ и снижает проницаемость в ~10 раз по сравнению с ЦПМ. Белки в составе наружной мембраны клеточной стенки (НМКС) делятся на конститутивные (присутствуют постоянно, независимо от условий) и индуцибельные (появляются при наличии потребности в них, т.е. их наличие или отсутствие определяются условиями существования бактерии). К числу конститутивных белков наружной мембраны клеточной стенки относятся порины , образующие в мембране гидрофильные каналы малого диаметра, через которые свободно проходит вода и небольшие гидрофильные молекулы (моно- и дисахариды, аминокислоты, азотистые основания, неорганические ионы и др.). К числу индуцибельных белков наружной мембраны клеточной стенки относятся, в частности:
Сидерофоры
, участвующие в транспорте через НМКС ионов железа        Транспортные белки, участвующие в переносе через НМКС определенных типов молекул, в т.ч. макромолекул.
^ Адгезионные белки, служащие для связывания с определенным рецептором на поверхности другой бактерии или в тканях хозяина.
  1   2   3

Похожие:

Морфология бактерий. Общие вопросы iconТема: Вибрионы. Спирохеты. Жгутики у бактерий. Изучение подвижности...
Содержательный модуль: Морфология извитых бактерий (вибрионы и спи-рохеты). Спирохеты, их место в систематике микроорганизмов. Патогенные...
Морфология бактерий. Общие вопросы iconМорфология и физиология бактерий
Поверхностные структуры бактерий: капсулы, жгутики, ворсинки, клеточная стенка, под ней – цитоплазматич мембрана. Внутр структуры:...
Морфология бактерий. Общие вопросы iconМорфология бактерий 6-27
Инфекция и инфекционный процесс. Биологический метод исследования 118-142
Морфология бактерий. Общие вопросы iconМорфология бактерий
Нобелевской премией за разработку клонально-селекционной теории антителогенеза награжден
Морфология бактерий. Общие вопросы iconЭкзаменационные вопросы по микробиологии Морфология и систематика...
Бактерии. Форма, размеры, строение клетки, подвижность, размножение и спорообразование. Характеристика основных групп бактерий, имеющих...
Морфология бактерий. Общие вопросы iconТема: Изучение колоний. Пигменты бактерий
Цель: Освоение практических навыков работы при выделении чистых культур бактерий: ІІ -й день исследования
Морфология бактерий. Общие вопросы iconТема: Питание бактерий. Простые питательные среды. Посев на мпа и мпб
Цель: Изучение принципов культивирования бактерий, особеннос-тей транспортирования инфицированного материала, методов стерилизации...
Морфология бактерий. Общие вопросы iconСеверной Америки Общие вопросы Общая характеристика и основные проблемы...
Общие черты и характерные особенности революции 1848 г в Европе (Франция, Германия, Австрия, Венгрия, Италия – демократизация политических...
Морфология бактерий. Общие вопросы iconВопросы к экзамену по морфологии современного русского языка
Морфология как раздел грамматики. Основные единицы, изучаемые в морфологии. Связь морфологии с другими разделами науки о языке
Морфология бактерий. Общие вопросы iconВопросы к экзамену по дисциплине «Анатомия и морфология человека»
Анатомия как наука: предмет изучения, задачи и методы анатомии, связь с другими науками. Понятие об органе, системе органов и аппарате...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница