Общие понятия токсикокинетики План лекции


Скачать 240.18 Kb.
НазваниеОбщие понятия токсикокинетики План лекции
Дата публикации31.07.2013
Размер240.18 Kb.
ТипДокументы
userdocs.ru > Биология > Документы
Общие понятия токсикокинетики

План лекции.

  1. Общие понятия токсикокинетики

  2. Резорбция веществ.

  3. Распределение веществ.

  4. Элиминация веществ.


1. Общие понятия токсикокинетики

Токсикокинетика — раздел токсикологам, в рамках которого изучаются за­кономерности резорбции ксенобиотиков в организм, их распределения, био­трансформации и элиминации (рис. 1).



Рис. 1. Этапы взаимодействия организма с ксенобиотиком
Возможности современной науки по изучению токсикокинетики раз­личных веществ возрастают по мере расширения знаний об организме и совершенствования методов химико-аналитического определения ксено­биотиков в биосредах. Токсикокинетические характеристики каждого ве­щества изучаются экспериментально на лабораторных животных и уточ­няются в условиях клиники.
С позиций токсикокинетики организм представляет собой сложную систе­му, состоящую из большого числа компартментов (отделов: кровь, ткани, внеклеточная жидкость, внутриклеточное содержимое и т. д.) с различны­ми свойствами, отделенных друг от друга биологическими барьерами (рис. 2).



^ Рис. 2. Схема движения веществ (С) по основным компартментам организма

В ходе поступления, распределения, выведения вещества осуществля­ются процессы его растворения, диффузии, конвекции в жидких средах, осмоса, фильтрации через биологические барьеры.

Растворение — накопление вещества в жидкой фазе (растворителе) в молекулярной или ионизированной форме. Проникнуть во внутренние среды организма могут лишь растворившиеся (в поте, жировой смазке кожи, желудочном или кишечном соке и т. д.) вещества.

Конвекция — механическое «перемешивание» среды, приводящее к уравниванию концентрации ксенобиотика, растворенного в ней. Вещест­ва, проникшие в кровоток, распределяются в организме, прежде всего, путем конвекции. Так как скорость кровотока в капиллярах существенно ниже, чем в крупных сосудах (в капиллярах — 0,03—0,05 см/с; в аорте — 20 см/с), перемешивание токсиканта в крови в основном осуществляется в сердце, аорте и крупных сосудах.

Диффузия — перемещение массы вещества в среде в соответствии с гра­диентом концентрации, осуществляемое вследствие хаотического движе­ния молекул. Физиологически значимые диффузионные процессы осу­ществляются на небольшие расстояния — от нескольких микрон до миллиметра. Дело в том, что время диффузии возрастает пропорциональ­но квадрату пути, проходимому молекулой (для диффузии на расстояние 1 мкм потребуется время 10-2 с, для 1 мм — 100 с, для 10 мм — 10 000 с, т. е. три часа). Поэтому за счет диффузии в организме осуществляется, главным образом, преодоление веществами различного рода барьеров и их распределение внутри клеток.

Фильтрация — движение растворенного вещества вместе с раствори­телем через пористые мембраны под действием гидростатического давле­ния.

Осмос — процесс перемещения растворителя через мембрану, не про­ницаемую для растворенного вещества, в сторону более высокой концентрации последнего под влиянием силы осмотического давления. Осмоти­ческое давление раствора пропорционально количеству частиц раство­ренного вещества.

Токсикокинетические характеристики вещества обусловлены как его свойствами, так и особенностями структурно-функциональной организа­ции клеток, органов, тканей и организма в целом.

К числу важнейших свойств вещества, определяющих его токсикокинетику, относятся:

  • Агрегатное состояние. Как известно, вещество может находиться в твердом, жидком и газообразном состоянии. Биодоступность ксенобио­тика, т. е. его способность поступать во внутренние среды организма, а также пути проникновения во многом определяются агрегатным состоя­нием. Так, пары синильной кислоты поступают в организм через легкие, жидкая синильная кислота может попасть в организм через кожу (в очень ограниченном количестве) и через желудочно-кишечный тракт, через же­лудочно-кишечный тракт поступают также соли синильной кислоты и их растворы.

  • Коэффициент распределения в системе «масло/вода». Определяется отношением растворимости вещества в неполярных растворителях (в том числе липидах) к растворимости в воде. Этот показатель влияет на спо­собность соединений преимущественно накапливаться в соответствую­щей среде (жирорастворимые накапливаются в липидах; водораствори­мые — в водной фазе плазмы крови, межклеточной и внутриклеточной жидкостях), а также преодолевать биологические барьеры.

  • Размер молекулы. Чем больше молекула, тем меньше скорость ее диффузии, тем в большей степени затруднены процессы фильтрации и т. д. Поэтому размеры, прежде всего, влияют на проницаемость ксеноби­отиков через биологические барьеры. Так, молекула СО (оксид углерода, угарный газ) практически мгновенно проникает в организм через легкие и быстро распределяется в крови и тканях, а молекуле ботулотоксина (MB более 150 000) для этого требуются часы.

  • Наличие заряда в молекуле. Влияет на прохождение веществ через барьеры и их растворимость в различных биосредах. Заряженные молеку­лы (ионы) плохо проникают через ионные каналы, не проникают через липидные мембраны, не растворяются в липидной фазе клеток и тканей. Даже ионы одного и того же элемента, имеющие различный заряд, по-разному преодолевают биологические барьеры: ионы Fe+2 — всасыва­ются в желудочно-кишечном тракте, a Fe+3 — нет.

  • Величина константы диссоциации солей, слабых кислот и основа­ний. Определяет относительную часть молекул токсиканта, диссоцииро­вавших на ионы в условиях внутренней среды.

  • Химические свойства. Влияют на сродство токсикантов к структур­ным элементам клеток различных тканей и органов.

^ Важнейшими характеристиками организма, влияющими на токсико-кинетику ксенобиотиков, являются свойства его компартментов и разде­ляющих их биологических барьеров.

Основными свойствами компартментов являются:

  • Соотношение воды и жира. Биологические структуры, ткани, орга­ны могут содержать большое количество липидов (биологические мемб­раны, жировая ткань, мозг) либо преимущественно состоять из воды (мышечная ткань, соединительная ткань и т. д.). Чем больше жира в структуре, тем в большем количестве в ней накапливаются жирораство­римые вещества. Так, жирорастворимый хлорорганический пестицид дихлордифенилтрихлорметилметан (ДДТ) будет накапливаться в жиро­вой клетчатке и сальнике. Хорошо растворимые в липидах молекулы фосфорорганических соединений легко проникают в мозг.

  • Наличие молекул, активно связывающих токсикант. Например, клетки тканей с высоким содержанием цистеина (кожа и ее придатки) ак­тивно накапливают вещества, образующие прочные связи с сульфгидрильными группами (мышьяк, таллий и т. д.). Белки костной ткани активно связывают двухвалентные металлы (стронций, свинец).

К числу биологических барьеров (с позиций токсикокинетики) отно­сятся структуры самого разного строения. Это клеточные и внутрикле­точные мембраны, гистогематические барьеры (например: гематоэнцефалический, плацентарный и т. д.), покровные ткани (кожа, слизистые оболочки). Все барьеры — гидрофобные образования богатые липидами, поэтому их легко преодолевают вещества с высоким значением коэффи­циента распределения в системе «масло/вода» (хорошо растворимые в липидах). Многие барьеры содержат «поры» — заполненные водой «кана­лы» в биологическом барьере (структура и размеры пор в различных барь­ерах совершенно различны).

Основные свойства барьеров:

* Толщина и суммарная площадь. Чем тоньше барьер и чем больше
площадь его поверхности, тем большее количество вещества может через
него пройти в единицу времени. Как видно из данных, приведенных в
табл. 3, среди барьеров, образованных покровными тканями, наиболь­
шую поверхность имеют альвеолярно-капиллярный барьер легких и сли­
зистая оболочка тонкого кишечника. Однако наибольшую суммарную
площадь поверхности, во много раз превосходящую площадь покровных
тканей и гистогематических барьеров, имеет гипотетический интеграль­
ный барьер, образуемый мембранами всех клеток организма, отделяю­
щий их от внеклеточной жидкости. Поэтому все, что всасывается в орга­
низм через покровные ткани, быстро попадает в клетки тех или иных
органов.

  • Наличие и размеры пор. Через поры диффундируют и фильтруются водорастворимые соединения. Диаметр пор и их суммарная площадь в различных биологических барьерах не одинаковы (табл. 1).

Наличие механизмов активного или облегченного транспорта хими­ческих веществ. Не растворимые в липидах соединения диффундируют и фильтруются через биопоры либо преодолевают барьер благодаря меха­низму активного транспорта. Активный транспорт веществ через биоло­гические мембраны проходит с большей скоростью, чем диффузия. Он осуществляется специальными транспортными белками и следует зако­номерностям ферментативных реакций. Активный транспорт обеспечи­вает ток малых молекул и ионов против градиента их концентраций. Для обеспечения процессов нужна энергия, запасенная в форме макроэргиче-ских соединений (например, АТФ) (табл. 5).

^ Таблица 3

Площадь «всасывающих» поверхностей тела человека, м2


Орган

Площадь

Кожа

1,2-2

Полость рта

0,02

Желудок

0,1-0,2

Тонкий кишечник

100

Толстый кишечник

0,5-1,0

Прямая кишка

0,04-0,07

Полость носа

0,01

Легкие

70

^ Таблица 1Характеристики различных биологических барьеров

Таблица 2 Признаки специфического транспорта

  1. Связывание ксенобиотика с наружной поверхностью мембраны и молекулой-носителем

  1. Транслокация связавшегося вещества через мембрану специальным носителем

  2. Высвобождение вещества из связи с носителем внутри клетки

  3. Субстратная специфичность взаимодействия вещества с носителем

  1. Кинетика процесса, описываемая гиперболой (наличие максимальной скорости процесса — Vmax и константы процесса — Кm)

  1. Наличие веществ, избирательно блокирующих процесс

  2. Более высокая скорость процесса в сравнении с процессом диффузии

Транспорт через биологические мембраны токсикантов, имеющих очень большую массу (белковых токсинов), может осуществляться с по­мощью цитозов (пиноцитоза, рецептор-связанного эндоцитоза и т. д.). Цитозы — процессы, неразрывно связанные с клеточным метаболизмом (табл. 6).

Транспорт веществ путем цитозов

1. Эндоцитозы: захват вещества клеткой

  1. Фагоцитоз: захват корпускулярных частиц

  2. Пиноцитоз: захват капель жидкости и растворенных в ней молекул

  3. Рецептор-обусловленный эндоцитоз: связывание макромолекул на специфи­ческих рецепторах клеточной мембраны с последующим образованием шеро-ховатых везикул

2. Экзоцитозы: выделение веществ из клетки

  1. Гранулокринная секреция: выделение везикул, содержащих клеточное ве­щество

  2. Отпочковывание: выделение части цитоплазмы содержащихся в ней веществ путем краевого отделения части клетки




  1. Трансцитоз (цитопемзис): транспорт веществ через объем клетки

  2. Синцитозы




  1. Слияние клеток

  2. Слияние клеток липидными везикулами, содержащими вещества

5. Интрацитоз: образование везикул и их слияние внутри клетки
Резорбция веществ.
Резорбция — это процесс проникновения вещества из внешней среды в кровяное или лимфатическое русло организма.

Основными структурами, участвующими в резорбции токсикантов, являются легкие (ингаляционное воздействие), кожа (трансдермальное воздействие), желудочно-кишечный тракт (энтеральное воздействие, пероральная интоксикация).
^ Ингаляционное поступление

Легкие являются основным путем поступления в организм газов (паров) и аэрозолей.

Благодаря большой площади поверхности и тесному контакту воздуха с капиллярным руслом, процесс резорбции здесь проходит с высокой эф­фективностью.

Скорость перехода газа (пара) из вдыхаемого воздуха в кровь тем выше, чем больше градиент концентрации в системе воздух — кровь. Со­держание газа в оттекающей от легких крови пропорционально его пар­циальному давлению во вдыхаемом воздухе. Усиление легочной вентиля­ции увеличивает диффузию газа (пара) в направлении концентрационно­го градиента или градиента парциального давления (из организма — в ор­ганизм, в зависимости от указанных выше условий). Скорость резорбции газообразного (парообразного) токсиканта увеличивается с увеличением скорости кровотока в легочной ткани.

Захват газов кровью зависит от их растворимости в крови. При прочих равных условиях состояние равновесия в системе альвеолярный воздух — кровь устанавливается тем быстрее, чем менее растворим токсикант в крови.

^ Легочная резорбция аэрозолей. Аэрозоли представляют собой фазовые смеси, состоящие из воздуха и мелких частиц жидкости (туман) или твер­дого вещества (дымы). Закономерности резорбции аэрозолей в дыхатель­ных путях отличаются от закономерностей резорбции газов (паров).

Резорбция в дыхательной системе аэрозоля является функцией коли­чества вещества, адсорбировавшегося на поверхности легких и дыхатель­ных путей, и зависит от концентрации аэрозоля, размера его частиц, час­тоты и глубины дыхания.

Адсорбция крупных частиц (около 5 мкм) происходит преимущест­венно в верхних дыхательных путях, мелких частиц (около 1 мкм) — в глубоких отделах дыхательных путей и альвеолах.

В силу тесного контакта между альвеолярным воздухом и капилляр­ным руслом, по разности альвеолярно-капиллярного барьера в дыхате­льных путях могут всасываться даже макромолекулы (ботулотоксин и др.). Частицы аэрозоля, адсорбировавшиеся на поверхности дыхатель­ных путей, могут захватываться макрофагами и с ними поступать в кро­воток.

Некоторые вещества, действуя в форме газов и аэрозолей, обладая вы­сокой реакционной способностью, взаимодействуют непосредственно с легочной тканью, вызывая местное действие (хлор, фосген и т. д.). Такие вещества резорбции практически не подвергаются; закономерности, ха­рактеризующие процесс, на них не распространяются.
^ Поступление через кожу.

Морфология, биохимия кожи препятствуют резорбции большинства ток­сикантов. Для водорастворимых веществ кожа представляет непреодоли­мый барьер. Некоторой проницаемостью кожные покровы обладают для веществ, хорошо растворимых в липидах (например, для зомана, фосфорилтиохолинов, иприта, люизита, тетраэтилсвинца и т. д.). Возможны два способа прохождения токсиканта через кожу: трансэпидермальный (че­рез клетки эпидермиса) и трансфолликулярный (через волосяные фолли­кулы).

Помимо способности растворяться в липидах, на скорость резорбции веществ через кожу влияют: агрегатное состояние, дисперсность (размер частиц аэрозолей), площадь и область кожных покровов, на которую на­несен токсикант, интенсивность кровотока в кожных покровах.

Механические повреждения, мацерация кожи, раздражение, сопро­вождающиеся усилением кровотока, усиливают процесс резорбции ток­сикантов. Некоторые органические растворители, разрушающие липидный слой кожи, могут усиливать кожную резорбцию.
^ Поступление через желудочно-кишечный тракт

Энтеральная резорбция предполагает хотя бы минимальную раствори­мость токсиканта в содержимом ЖКТ. Слизистая оболочка желудоч­но-кишечного тракта в силу особенностей строения приспособлена для быстрой резорбции веществ. Поскольку сосудистая сеть желудочно-ки­шечного тракта развита хорошо, резорбция здесь не лимитирована фак­тором кровоснабжения. Закономерности резорбции аналогичны во всех отделах желудочно-кишечного тракта.

Имеющиеся особенности всасывания в различных отделах ЖКТ

определяются:

* Различиями рН содержимого отделов. Содержимое желудка имеет
кислую реакцию. Слабые кислоты (например, производные барбитуро­вой кислоты и др.), в основном, здесь находятся в недиссоциированном
состоянии и потому относительно легко всасываются. Слабые основания
(алкалоиды), напротив, в желудочном соке находятся в форме ионов и
потому — не всасываются. В кишечнике рН — щелочная, и поэтому здесь
преобладают ионизированная форма кислот и неионизированная форма
слабых оснований.

♦ Неодинаковой площадью всасывающей поверхности (см. табл. 1).
Количество и качество пищи, принятой вместе (до, после) с токси­кантом, могут существенно повлиять на скорость его резорбции.
^ Распределение Транспорт веществ кровью

Всосавшееся вещество попадает в кровь и с током крови разносится по организму. Кровь может осуществлять транспорт веществ в свободной и связанной форме.

Способностью связывать ксенобиотики обладают альбумины, гли-копротеиды и липопротеиды плазмы крови. В основе связывания ксено­биотиков белками лежит образование между ними слабых гидрофобных, водородных и ионных связей. Связанные соединения приобретают ха­рактеристики распределения, свойственные белкам. Сильные связи бе­лок — ксенобиотик затрудняют отток вещества в ткани.

Положительно заряженные ксенобиотики могут адсорбироваться на отрицательно заряженной мембране эритроцитов. Липофильные вещест­ва проникают через эритроцитарную мембрану и взаимодействуют с ге­моглобином. Связавшаяся с гемоглобином фракция ксенобиотика порой не в состоянии диффундировать из клетки и длительно циркулирует в та­ком состоянии в крови.

Поступление в ткани



. 6. Особенности кровоснабжения различных органов и тканей

Таблица 3



Так, например, захвату ксенобиотиков печенью способствуют хорошее кровоснабжение органа, высокая степень порозности эндотелия капиллярного русла. Клеточные мембраны гепатоцитов также содержат большое количество пор, что облегчает поступление веществ в клетки. Помимо указанного, накоплению ксенобиотиков в органе способствуют механизмы их активного захвата из плазмы крови (активный транспорт кислот, щелочей, пиноцитоз макромолекул).

Напротив, проникновение из крови в ЦНС многих (прежде всего водорастворимых) ксенобиотиков существенно затруднено наличием так называемого гематоэнцефалического барьера (ГЭБ).

Гематоэнцефалический барьер формируется при участии ряда анатомических структур головного мозга.

Во-первых, эндотелий капиллярного русла головного мозга отличается от эндотелия других органов чрезвычайно тесным контактом клеток друг с другом. Эффективный радиус пор капилляров мозга значительно меньше, чем в других тканях, и составляет, например, у кролика 0,7—0,9 нм. Крупные молекулы не в состоянии проникать через эндотелиальный барьер. Водорастворимые и заряженные молекулы могут проходить непосредственно через биомембраны и цитоплазму эндотелиальных клеток только в том случае, если имеют малые размеры (CN~). В норме эндотелиальные клетки мозга лишены способности к пиноцитозу. Лишь при некоторых патологических состояниях (гипоксия мозга) в эндотелии сосудов образуются пиноцитарные вакуоли, при этом возрастает проницаемость гематоэнцефалического барьера, увеличивается уязвимость мозга для действия токсикантов.

Во-вторых, капилляры мозга плотно окутаны отростками астроцитарной глии. Астроцитарная оболочка препятствует проникновению гидрофильных ксенобиотиков из крови в ткань мозга и их взаимодействию с другими клеточными элементами. В некоторых областях мозга, таких как срединное возвышение гипоталамуса, медиальная преоптическая область, область IV желудочка, астроцитарная оболочка капилляров развита сравнительно слабо. В этих регионах возможно проникновение водорастворимых и даже заряженных молекул токсикантов в ЦНС, но также в ограниченном количестве.

Наконец, последней структурой, вносящей вклад в формирование ГЭБ, является базальная мембрана, залегающая между эндотелиальными клетками капилляров и отростками астроцитов. Эта мембрана имеет упорядоченную фибриллярную макропротеидную структуру, обеспечивающую избирательное проникновение в мозг ряда важных для обеспечения его жизнедеятельности молекул (кислорода, глюкозы и др.). Аналогичный ГЭБ барьер окружает периферический отдел нервной системы (гематоневральный барьер). Однако, так же как и в ЦНС, здесь имеются анатомические образования с повышенной проницаемостью для токсикантов. К числу таких относятся спинальные корешки дорсаль­ных (чувствительных) ганглиев и вегетативные (автономные) ганглии.

Плацентарный барьер проницаем для многих веществ, в том числе высокомолекулярных соединений. Это обстоятельство может иметь не­благоприятные последствия для плода, особенно при попадании токси­кантов в организм матери в первые 12 нед беременности (период органо­генеза).

Важным элементом распределения некоторых ксенобиотиков в орга­низме является их депонирование. Депонирование — это накопление и длительное сохранение химического вещества в относительно высокой концентрации в одном или нескольких органах (или тканях). Порой де­понирование не сопровождается повреждением биологически значимых молекул-мишеней (токсический процесс не формируется).

В основе депонирования лежат два явления:

  • высокое физико-химическое сродство ксенобиотика к неким компонентам биосистемы (химическое взаимодействие с эле­ментами биосистемы или избирательное накопление липофильных веществ в жировой ткани);

  • кумуляция благодаря избирательному, активному захвату токси­канта клетками органа (ткани).

Ряд токсикантов депонируются в тканях настолько прочно, что выве­дение их из организма практически невозможно. Например, период по­луэлиминации кадмия из организма человека составляет более 20 лет.

Явление депонирования веществ связано с явлением кумуляции, но не тождественно ему. Под материальной кумуляцией понимают процесс постепенного накопления токсиканта при длительном поступлении в ор­ганизм преимущественно в области функционально-значимых струк­тур-мишеней, действие на которые приводит к развитию токсического процесса. Явление кумуляции лежит в основе хронических интоксика­ций. В ряде случаев выявляют так называемую функциональную кумуля­цию — накопление неблагоприятных эффектов токсиканта при его про­должительном введении.
Элиминация

Элиминацией называется вся совокупность процессов, приводящих к снижению содержания токсиканта в организме. Она включает процессы экскреции (выведения) ксенобиотика из организма и его биотрансфор­мацию.
Экскреция

Основными органами экскреции являются легкие (для летучих соединений), почки, печень, в меньшей степени слизистая оболочка желудочно-кишечного тракта, кожа и ее придатки.
^ Легочная экскреция

Газы и пары летучих веществ выделяются через легкие в соответствии с градиентом их парциального давления между кровью и альвеолярным воздухом. Закономерности экскреции газообразных (парообразных) веществ полностью идентичны закономерностям их поступления через легкие (см. выше).
^ Почечная экскреция

Почки - важнейший орган выделения. Через почки выводятся продукты обмена веществ, многие ксенобиотики и продукты их метаболизма. Масса почек чуть менее 0,3% массы тела, однако через орган протекает около 30% минутного объема крови. Благодаря хорошему кровоснабжению, находящиеся в крови вещества, подлежащие выведению, быстро переходят в орган, а затем и выделяются с мочой. В основе процесса лежат три механизма

• фильтрация через гломерулярно-капиллярный барьер;

• секреция эпителием почечных канальцев;

• реабсорбция клетками эпителия.



Через почки протекает около 700 мл плазмы крови в минуту, из которых 20% (125—130 мл/мин) отфильтровывается через гломерулярно-капиллярный барьер. Собирающаяся в почечных клубочках первичная моча по сути представляет собой сыворотку крови. Более 99% отфильтрованной жидкости реабсорбируется в почечных канальцах. При этом концентрация растворенных в моче веществ возрастает в 100 раз. Хорошо растворимые в липидах соединения по этой причине практически полностью диффундируют из первичной мочи через эпителий почечных канальцев обратно в кровь (реабсорбция). Выведения таких веществ из организма практически не происходит.

Способность к выведению через почки у слабых кислот и оснований во многом определяется рН первичной мочи: выведение слабых оснований усиливается при подкислении мочи (преобладает ионизированная форма оснований — затруднена реабсорбция их в канальцах); выведение слабых кислот усиливается при подщелачивании мочи (преобладает ионизированная форма кислот).

Многие токсиканты выводятся через почки с помощью механизма активной секреции. Функции секретирующей структуры выполняет эпителий почечных канальцев. Существуют независимые механизмы активного транспорта для веществ со щелочными и кислотными свойствами.
^ Печеночная экскреция

Печеночная экскреция — отчасти следствие простой диффузии веществ в желчь, отчасти — активного транспорта ксенобиотиков, осуществляемого гепатоцитами. Благодаря активному транспорту отношение концентраций веществ в желчи и плазме крови значительно выше 1. Высокая концентрация химических веществ в желчи обеспечивает осмос воды из сосудистого русла в желчные ходы. Наиболее активно печенью выводятся вещества с молекулярной массой более 600 дальтон, имеющие в структуре полярную анионную или катионную группу.

Ряд ксенобиотиков, выделяющихся с желчью (липофильные вещества либо гидрофильные соединения, превращающиеся в липофильные под влиянием кишечной флоры), способны к обратному всасыванию слизистой оболочкой кишечника и по системе портальной вены повторно накапливаются в печени. Это явление называется гепатоэнтеральной циркуляцией.
^ Метаболизм ксенобиотиков (биотрансформация)

Многие ксенобиотики в организме подвергаются метаболическим превращениям (биотрансформации).

Основной биологический смысл биотрансформации — превращение исходного токсиканта в форму, удобную для скорейшей экскреции. Биотрансформация — ферментативный процесс.
Выделяют 2 фазы метаболических превращений чужеродных соедине­ний:

I — фаза окислительной, восстановительной либо гидролитической

трансформации молекулы;

II — фаза синтетических превращений.



Фазы метаболизма чужеродных соединений

В I фазе происходят следующие реакции биотрансформации:

  • окисление — гидроксилирование, декарбоксилирование, образо­вание оксидов, десульфурирование, дегалогенизирование моле­кул, окисление спиртов и альдегидов;

  • восстановление — восстановление альдегидов, азовосстановле-ние, нитровосстановление;

• гидролиз — расщепление эфиров, амидных связей.
Основные энзимы, активирующие процессы биотрансформации I фа­
зы: цитохром Р-450 зависимые оксидазы смешанной функции (Р-450),
флавинсодержащие монооксигеназы смешанной функции (ФМО), гид-
ропероксидазы, алкоголь- и альдегиддегидрогеназы, флавопротеинредук-
тазы, эпоксидгидролаза.

Нередко в результате метаболизма вещества на первом этапе образу­ются промежуточные продукты, обладающие высокой биологической ак­тивностью.
^ Примеры биотрансформации ксенобиотиков с образованием активных промежуточных продуктов в ходе I фазы метаболизма



Большинство энзимов I фазы локализованы в гладком эндоплазма-тическом ретикулуме клетки (микросомальные энзимы); часть — в рас­творимой фазе цитозоля (алкоголь-, альдегиддегидрогеназа, эстеразы). Некоторые гидролазы содержатся в плазме крови (карбоксилэстераза, арилэстераза).

В II фазе происходят следующие реакции биотрансформации:

  • конъюгация промежуточных продуктов с глюкуроновой кисло­той,

  • конъюгация с серной кислотой,

  • конъюгация с глутатионом,

  • метилирование,

  • ацилирование,

  • образование меркаптосоединений.

Основные энзимы, активирующие процесс биотрансформации II фазы: УДФ-глюкуронозилтрансфераза, сульфотрансфераза, ацетил- КоА-амин-N-ацетилтрансфераза, глутатион-Б-трансфераза, цистеинконъюгирующие лиазы.

^ Характеристика основных реакций конъюгации ксенобиотиков

Большинство энзимов II фазы локализованы в растворимой фазе цитозоля.

Основным органом, метаболизирующим ксенобиотики, является печень. В меньшей степени активно идут превращения ксенобиотиков в легких, почках, кишечнике, коже, селезенке и других тканях. Некоторые вещества метаболизируют в крови. Как правило, в метаболических превращениях ксенобиотика принимают участие несколько органов.

^ Локализация этапов метаболических превращений ксенобиотиков в организме.

На интенсивность биотрансформации ксенобиотиков могут влиять различные факторы.

Естественные факторы:

• вид организма, пол, возраст, состояние питания.

Экзогенные факторы:

♦ Повреждение структур, метаболизирующих ксенобиотики. На метаболизме ксенобиотиков сказываются: гепатоэктомия, адреналэктомия, кастрация.

♦ Химические вещества, способные вызывать индукцию (усиление) метаболизма, конкурентное и неконкурентное ингибирование метаболизма.

К числу индукторов биотрансформации чужеродных веществ относятся: барбитураты, полициклические углеводороды, андрогенные стероиды, анаболические стероиды, глюкокортикоиды, спиронолактон и др.

К числу ингибиторов биотрансформации относятся: метирапон, пи-перонилбутаксид, 7,8-бензофлавон, SKF-525, Lilly 18947 и др.

Биологическими последствиями биотрансформации ксенобиотиков могут стать:

• ослабление или полная потеря биологической активности токсикантов (ФОВ, синильная кислота);

• изменение биологической активности: исходное вещество и продукты его метаболизма в достаточной степени токсичны, но действуют на различные биомишени (метанол, дихлорэтан и т. д.);

• усиление токсичности или появление новых свойств (иприт, фторэтанол, бенз(а)пирен и др.).

Процесс увеличения активности токсиканта в ходе его метаболизма называется биоактивацией.

Биоактивация, как правило, осуществляется в ходе I фазы метаболизма (образование промежуточных продуктов метаболизма, часто обладающих высокой реакционной способностью).

В ходе II фазы метаболизма биологическая активность продукта превращения обычно существенно снижается.

Неопределенные последствия метаболизма многих ксенобиотиков заставляют с большой осторожностью относиться к модификации процесса с помощью доступных в настоящее время средств и методов.
^ Количественные характеристики токсикокинетики

Количественная токсикокинетика — раздел токсикологии, разрабатывающий математические модели, описывающие поступление, распределение, элиминацию ксенобиотиков.

Основой создания токсикокинетических моделей являются получаемые экспериментально графики зависимости концентрации веществ в крови и тканях от времени после различных способов введения токсиканта (рис. 10).



Зависимость концентрации вещества в плазме крови от времени после внутривенного введения
Исходными данными для анализа являются:

  • введенное количество вещества (D — мг);

  • концентрация в крови (С — мг/мл), определенная в различное время после введения D;

  • время от начала введения (t — мин).

На основании полученных данных рассчитывается площадь под кри­вой (ППК — мг • мин/мл), ограниченная осями координат и кривой зави­симости «концентрация в крови — время».

Изучение зависимости концентрации вещества в плазме крови от вре­мени позволяет установить наиболее часто используемые характеристики токсикокинетики:

  • квота резорбции, QR

  • объем распределения, Vd

  • период полуэлиминации, ti/2

  • общий клиренс, С1

Квота резорбции (биодоступность). Количественной характеристикой способности вещества проникать в организм различными путями может служить величина «квоты резорбции вещества (КРВ)». КРВ представляет собой отношение всосавшегося вещества к общему количеству апплици-рованного тем или иным способом. КРВ может быть рассчитана путем построения диаграмм в координатах: «время — концентрация токсиканта в крови». Площадь под кривой такой диаграммы (ППК) определяется, среди прочего, количеством всосавшегося токсиканта. Если соотнести величину ППК токсиканта для внутривенного введения (ППК;У) с вели­чиной nnKd при ином (любом) способе аппликации, то значение коэф­фициента QR = nnKd/nriKjv и определит величину квоты резорбции для исследуемого способа введения токсиканта. Чем ближе значение QR к 1, тем лучше всасывается вещество исследуемым способом.

При анализе данных необходимо учитывать, что в таком прочтении величина биодоступности не в полной мере отражает последствия дейст­вия токсиканта на организм. Дело в том, что ППК при разных способах воздействия может быть одинаковой, но различная скорость поступления и одновременно протекающая элиминация соединения могут привести к совершенно разным эффектам действия одного и того же вещества. При­мер такой ситуации приведен на рис. 11.



^ Кривые динамики концентрации вещества А в плазме крови экспериментального животного
Вещество введено в дозе D различными способами: N1 — внутривенное введение N2 — введение через желудочно-кишечный тракт

N3 — введение через желудочно-кишечный тракт в форме, адсорбированной на ионно-обменной смоле

Как видно из данных, приведенных на рис. 11, несмотря на прекрас­ную всасываемость вещества в ЖКТ смертельный эффект может развить­ся лишь при его внутривенном введении в дозе D.

^ Объем распределения. Абсолютным объемом распределения вещества (Vd) называется сумма мнимых объемов внутренней среды организма, в которых вещество распределилось таким образом, что его концентрация в них равна концентрации в плазме крови (С).

Vd рассчитывается как отношение введенного количества токсиканта (D) к величине его концентрации в плазме крови:

VD = D/C.

Относительный объем распределения (Vr) целесообразно рассчиты­вать с учетом массы организма (М):

Vr = VD/M — выражается в процентах от массы тела.

Для веществ, распределяющихся только в плазме крови, Vr равен объему плазмы крови, распределяющихся во внеклеточной жидкости — суммарному объему плазмы крови и внеклеточной жидкости и т. д. Для веществ, активно связывающихся тканями организма, относительный объем распределения может быть более 100%.



^ Зависимость концентрации вещества в плазме крови от времени после внутривенного введения в системе полулогарифмических координат
Периодом полуэлиминации называется время, в течение которого эли­минирует половина введенного количества токсиканта. Период полуэли­минации зависит от строения вещества и функционального состояния органов, метаболизирующих и экскретирующих ксенобиотики. В подав­ляющем большинстве случаев элиминация осуществляется в соответст­вии с кинетическим уравнением 1-го порядка, т. е. зависимость «кон­центрация — время» носит экспоненциальный характер (см. рис. 10). Представление зависимости в координатах «In концентрации — время» позволяет преобразовать ее в прямую (рис. 12).

Величина угла наклона кривой (InC/t) называется константой скорости элиминации (Ке), зная которую, легко рассчитать период полуэлиминации (ti/2>. Зная период полуэлиминации, просто оценить время пребывания вещества в организме: при в/в введении вещества — это время приблизительно составляет 5t1/2. Через этот промежуток времени в организме остается не более 3% от введенного количества токсиканта.

Клиренс (С1 — мл/мин) — часть абсолютного объема распределения (условно: плазмы крови), полностью освобождающегося от ксенобиотика в единицу времени. Величина клиренса может быть рассчитана по формуле:

CI = D/ППК,

где D — доза введенного вещества (мг); ППК— площадь под кривой (мг'мин/мл).






Похожие:

Общие понятия токсикокинетики План лекции iconАнтидоты. Общие принципы оказания неотложной помощи отравленным
Поводом для введения этиотропных препаратов, является знание непосредственной причины отравления, особенностей токсикокинетики яда....
Общие понятия токсикокинетики План лекции iconПлан лекции: Общие положения о правовом регулировании профессионального образования в Украине
Нормативная база по включает государственные нормативные акты, которые регулируют общественные отношения в области обучения, воспитания,...
Общие понятия токсикокинетики План лекции iconПлан-конспект лекции Тема лекции «Культура Античности»
Зелинский Ф. Ф. Древний мир и мы. Научно популярные статьи [1904]. Спб., 1997. ("Из жизни идей", т. 2)
Общие понятия токсикокинетики План лекции iconПлан лекции: Общие сведения об экспрессии генов. Организация генетического...
Лекция № Экспрессия генов. Транскрипционные факторы организации генетического материала у эукариот
Общие понятия токсикокинетики План лекции iconЗаконодательство российской федерации о единой государственной системе...
Основные понятия: чрезвычайная ситуация, предупреждение чрезвычайных ситуаций, ликвидация чрезвычайных ситуаций, зона чс чрезвычайных...
Общие понятия токсикокинетики План лекции iconЛекция 2 часа Тема лекции: психология как наука. Исторические этапы...
Начала христианской психологии: Учеб пособие для вузов / Под ред. Б. С. Братуся. — М.: Наука, 1995
Общие понятия токсикокинетики План лекции iconКонспект лекции План лекции Цель, задачи и объекты анализа финансовой...
Одним из видов экономического анализа является финансовый анализ, который с определенной долей условности подразделяется на внутренний...
Общие понятия токсикокинетики План лекции iconЦель: Общие сведения о использовании, спецификации. Основные сведения...
...
Общие понятия токсикокинетики План лекции iconПрограмма лекции Адрес Время проведения лекции Участники лекции 12...

Общие понятия токсикокинетики План лекции iconПлан лекции. Комплексного подхода к управлению деятельностью, связанной...
План действий. Рекомендации в отношении действий связанных с чрезвычайными ситуациями и стихийными бедствиями
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница