1 Элементарный электрический заряд


Название1 Элементарный электрический заряд
страница1/7
Дата публикации12.04.2013
Размер1.08 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
  1   2   3   4   5   6   7
1 Элементарный электрический заряд

Элемента́рный электри́ческий заря́д — минимальная порция (квант) электрического заряда. Равен приблизительно 1,602 176 565(35)·10−19 Кл[1] в системе СИ (и 4,803·10−10 ед. СГСЭ в системе СГС). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие

Квантование электрического заряда

Любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному — такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые заряд был экспериментально измерен Милликеном в 1908 году.

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что одно только существование магнитного монополя влечёт за собой квантование заряда. Однако обнаружить в природе магнитный монополь пока не удалось.

В современной физике элементарных частиц разрабатываются модели наподобие преонной, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».

Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени. Однако, конкретных общепринятых результатов в этом направлении пока не получено.

Дробный электрический заряд

С открытием кварков стало понятно, что элементарные частицы могут обладать дробным электрическим зарядом, например, 1⁄3 и 2⁄3 элементарного. Однако подобные частицы существуют только в связанных состояниях (конфайнмент), таким образом, все известные свободные частицы имеют электрический заряд, кратный элементарному, хотя рассеяние на частицах с дробным зарядом наблюдалось.

Неоднократные поиски свободных объектов с дробным электрическим зарядом, проводимые различными методиками в течение длительного времени, не дали результата.

Стоит, однако, отметить, что электрический заряд квазичастиц может быть не кратен целому. В частности, именно квазичастицы с дробным электрическим зарядом отвечают за дробный квантовый эффект Холла.

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Закон сохранения заряда и калибровочная инвариантность

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функцией, где x — пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы , которую можно считать угловой координатой в некотором фиктивном двумерном «зарядовом пространстве». Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа , где Q — заряд частицы, описываемой полем , а — произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U

Закон сохранения заряда в интегральной форме Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

Здесь — некоторая произвольная область в трёхмерном пространстве, — граница этой области, — плотность заряда, — плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Экспериментальная проверка

Наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда не наблюдались.[5] Лучшее экспериментальное ограничение на вероятность нарушения закона сохранения электрического заряда получено из поиска фотона с энергией mec2/2 ≈ 255 кэВ, возникающего в гипотетическом распаде электрона на нейтрино и фотон: e → νγ время жизни больше 4,6·1026 лет (90 % CL),[6]

однако существуют теоретические аргументы в пользу того, что такой однофотонный распад не может происходить даже в случае, если заряд не сохраняется.[7] Другой необычный несохраняющий заряд процесс — спонтанное превращение электрона в позитрон[8] и исчезновение заряда (переход в дополнительные измерения, туннелирование с браны и т. п.). Наилучшие экспериментальные ограничения на исчезновение электрона вместе с электрическим зарядом и на бета-распад нейтрона без эмиссии электрона: e → любые частицы время жизни больше 6,4·1024 лет (68 % CL)[9]

n → pνν относительная вероятность несохраняющего заряд распада менее 8·10−27 (68 % CL) при бета-распаде нейтрона[10]

^ 2. Закон Кулона

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[1]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются).Содержание

Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В СИ k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м) и записывается следующим образом:

где ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

В СГСЭ

В СИ

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.[2]

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

Здесь m — масса электрона, е — его заряд, — абсолютная величина радиус-вектора j-го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.[3]

^ 3.Электрическое поле

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).Содержание

Энергия электрического поля

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического пол

^ Напряжённость электрического поля

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное[3] в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.


4.Линии напряженности. Поток вектора напряженности.

Электрическое поле задается указанием для каждой точки величины и направления вектора Е. Совокупность этих векторов образует поле вектора напряженности электрического поля. Влиний тока. Аналогично электрическое поле можно описать с помощью линий напряженности, которые называются сокращенно линиями Е.

На линии напряженности касательная к ней в каждой точке паралеьна вектору Е. Густота линий выбирается так, чтобы количество линий, пронизывающих единицу поверхности площадки, перпендикулярной к линиям, было равно численному значению модуля вектора Е. Тогда по картине линий напряженности можно судить о направлении и величине вектора Е в разных точках пространства (рис. 7).


http://wmelon.narod.ru/1/img1.jpg
Рис. 7.

  Число линий на любом расстоянии от заряда будет одно и то же. Следовательно, линии нигде, кроме заряда, не начинаются и не заканчиваются. Это свойство линийЕ является общим для всех электростатических полей, создаваемых любой системой неподвижных зарядов: линии напряженности могут начинаться или заканчиваться лишь на зарядах, либо уходить в бесконечность.

Изменение направления нормали на противоположное изменяет знак у En, а следовательно, и знак у потока Ф. В случае замкнутых поверхностей принято вычислять поток, выходящий

http://wmelon.narod.ru/1/img2.jpg

Рис. 8.

из охватываемой поверхностью области наружу. Поэтому под нормалью к d^ S в дальнейшем будет всегда подразумеваться обращенная наружу, т. е. внешняя, нормаль. В тех местах, где вектор Е направлен наружу (т. е. линия Е выходит из объема, охватываемого поверхностью), Еn и соответственно dФ будут положительны; в тех же местах, где вектор Е направлен внутрь (т. е. линия Е входит в объем, охватываемый поверхностью), Еn и dФ будут отрицательны (рис.8.
  1   2   3   4   5   6   7

Похожие:

1 Элементарный электрический заряд iconВопросы по курсу
Понятие об элементарных частицах. Электрон, протон, нейтрон, нейтрино. История их открытия. Античастицы. Мезоны. Основные свойства...
1 Элементарный электрический заряд iconВзаимодействие между заряженными частицами называются- электромагнитными....
Электризация — это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных...
1 Элементарный электрический заряд iconЗакон сохранения электрического заряда
Электростатика. Эл заряд. Точечный заряд. Закон сохр заряда. Закон Кулона в вакууме. Принцип суперпозиции сил
1 Элементарный электрический заряд iconВопросы к междисциплинарному экзамену по курсу: “
Электроприводы с двигателями постоянного тока (дпт). Основные характеристики. Режимы работы дпт с независимым возбуждением (дпт нв)....
1 Элементарный электрический заряд iconВосприятий и представлений
Например, воспринимается только цвет или консистенция предмета либо звук какого-то явления и т д. Ощущение — самый элементарный акт...
1 Элементарный электрический заряд iconЧто такое атом? В переводе на русский язык атом означает неделимый....
При изучении этих частиц оказалось, что протоны и электроны обладают электрическими зарядами, причем заряды их равны по величине,...
1 Элементарный электрический заряд iconВ россии в 1976 году микроволновые печи были запрещены из-за их вредного...
Изменяют элементарный состав продуктов питания, вызывая расстройства пищеварения
1 Элементарный электрический заряд iconПеречень вопросов по курсу «электрический привод»
Разновидности механических характеристик двигателя и механизма, их классификация
1 Элементарный электрический заряд iconВопросы к кмр №1 по биохимии
Протеиногенные аминокислоты, несущие в водных растворах суммарный положительный заряд
1 Элементарный электрический заряд iconЛюксметр-яркомер
В измерительной головке установлен первичный преобразователь светового излучения в электрический сигнал – полупроводниковый кремниевый...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница