Физика веры


НазваниеФизика веры
страница7/16
Дата публикации05.06.2013
Размер2.34 Mb.
ТипКнига
userdocs.ru > Физика > Книга
1   2   3   4   5   6   7   8   9   10   ...   16

Виртуальные частицы
Одной из особенностей вакуума является наличие в нем полей с энергией, равной нулю и без реальных частиц. Это электромагнитное поле без фотонов, это пионное поле без пи-мезонов, электронно-позитронное поле без электронов и позитронов.

Но раз есть поле, то оно должно колебаться. Такие колебания в вакууме часто называют нулевыми потому, что там нет частиц. Удивительная вещь; колебания поля невозможны без движения частиц, но в данном случае колебания есть, а частиц нет! Как это можно объяснить? Физики считают, что при колебаниях рождаются и исчезают кванты. Колеблется электромагнитное поле — рождаются и пропадают фотоны, колеблется пионное поле — появляются и исчезают пи-мезоны и т, д. Физика сумела найти компромисс между присутствием и отсутствием частиц в вакууме. Компромисс такой: частицы рождаются при нулевых колебаниях, живут очень недолго и исчезают, Однако, получается, что частицы, рождаясь из “ничего” и приобретая при этом массу и энергию, нарушают тем самым неумолимый закон сохранения массы и энергии. Тут вся суть в том “сроке жизни”, который отпущен частицам: он настолько краток, что “нарушение” законов можно лишь вычислить теоретически, но экспериментально это наблюдать нельзя. Родилась частица из “ничего” и тут же умерла. Например, время “жизни” мгновенного электрона, примерно, 10-21 секунды, а мгновенного нейтрона 10-24 секунды. Обычный же свободный нейтрон живет минуты, а в составе атомного ядра даже неопределенно долго, как и электрон, если его не трогать.

Поэтому частицы, живущие так мало, что этого в каждом конкретном случае и заметить нельзя, назвали, в отличие от обычных, реальных, — виртуальными, В точном переводе с латыни — возможными. Но считать, что данные частицы только возможны, а па самом деле их нет — неверно. Эти “возможные” частицы в вакууме вполне реально воздействуют, как это наблюдается в точных экспериментах, на вполне реальные образования из безусловно реальных частиц и даже на микроскопические тела (69, с. 67). И если отдельную виртуальную частицу физика обнаружить не может, то суммарное их воздействие на обычные частицы фиксируется отлично.

Наблюдать воздействие вакуумных виртуальных частиц оказалось возможно не только в опытах, где изучаются взаимодействия элементарных частиц, но и в эксперименте с макротелами- Две пластины, помещенные в вакуум и приближенные друг к другу, под ударами виртуальных частиц начинают притягиваться. Этот факт был открыт в 1965 году голландским теоретиком и экспериментатором Гендриком Казимиром.

По сути, абсолютно все реакции, все взаимодействия между реальными элементарными частицами происходят при непременном участии вакуумного виртуального фона, на который элементарные частицы, в свою очередь, тоже влияют.

Оказалось также, что виртуальные частицы возникают не только в вакууме. Их порождают и обычные частицы. Электроны, например, постоянно испускают и тут же поглощают виртуальные фотоны.
^ Поляризация вакуума
Реальный электрон притягивает к себе виртуальные позитроны и отталкивает виртуальные электроны — по знакомому нам закону притяжении разноименных и отталкивания одноименных электромагнитных зарядов. В результате вакуум поляризуется, поскольку заряды в нем оказываются разделенными пространственно. Электрон оказывается окруженным слоем виртуальных позитронов. И каждая элементарная частица движется в сопровождении целой свиты из виртуальных частиц. Такое облако виртуальных частиц вокруг частицы реальной часто называют шубой и даже не ставят кавычек. Такая виртуальная шуба мешает разглядеть саму реальную частицу.

Член-корреспондент АН СССР Д. И. Блохинцев писал: “...В результате поляризации вакуума вокруг заряженной частицы создается связанная с ней „атмосфера"”.

Резерфордовскую модель атома, так напоминающую Солнечную систему, пришлось заменить другой, где вокруг ядра летает не твердый шарик, а размазанное по орбите облако, а частицы ядра удерживаются вместе благодаря обмену другими частицами.

Огромная заслуга Дирака заключается в том, что он разработал релятивистскую теорию движения электрона, предсказавшую позитрон, аннигиляцию (исчезновение) и рождение из вакуума электронно-позитронных пар. В 1933 году совместно с физиком Э. Шредингером он был удостоен Нобелевской премии (18, с. 399).

Дальнейшие исследования квантовой физики были посвящены, в частности, изучению возможности появления из вакуума реальных частиц. Что если на вакуум подействовать каким-нибудь полем, которое несет в себе энергию, достаточную, чтобы, по крайней мере, некоторые виртуальные частицы превратить в реальные?

Еще в 1939 году Э. Шредингер теоретически обосновал ситуацию, при которой из вакуума должны рождаться реальные частицы. Но уравнение, полученное им, оказалось, по крайней мере на время, мудрее своего творца. Шредингер посчитал возможность рождения реальной частицы из вакуума недостатком теории, из которой исходил в своих рассуждениях и размышлениях.

Стоит отметить, что в 1934 году Э, Шредингер был избран почетным членом АН СССР в знак признания его выдающихся заслуг (95, с, 130). В 90-х годах, когда было открыто пятое фундаментальное взаимодействие — информационное, ученые поняли, какие именно поля должны воздействовать на физический вакуум с целью получения реальных частиц. Это оказались торсионные поля, служащие носителем информации в Тонком Мире, распространяющиеся с мгновенной скоростью и без затрат энергии.

Вот вам и предположения Эйнштейна, и теорема Белла, и исследования Бома, и эксперименты Аспекта.

Подводя итоги сказанному, подчеркнем следующее: квантовая физика доказала, что в вакууме в скрытом виде присутствуют частицы и античастицы, а квант своей энергией проявляет пару (электрон-позитрон), дает ей наблюдаемое и, так сказать, легальное положение в мире.

Именно квантовая физика сделала эйнштейновское пространство физическим вакуумом, заполнила это пространство материальной средой, не поссорившись с теорией относительности. Но союз квантовой физики и теории относительности мог достичь своего апогея только в результате создания Единой Теории Поля. Она должна быть тесным образом связана со свойствами физического вакуума, опираться в своих выводах на эти свойства и в то же время объяснять их.
2.1.8. Физический вакуум
Наши современные представления об источнике всех частиц и полей связываются с физическим вакуумом — основным состоянием любого вида материи. С моей точки, зрения, проблема единой теории поля получила свое решение в теории физического вакуума”.

^ Г. И. Шипов (117.с. 19).
О формировании единой картины мира
Древние философы Востока утверждали, что все материальные объекты возникают из великой пустоты, где постоянно совершаются акты творений реальности. Эта идея просматривается также и в физике, начиная с Ньютона и до наших дней, в стремлении увязать геометрию пространства событий и механику движения тел. Английский математик В. Клиффорд утверждал, что в физическом мире не происходит ничего, кроме изменения кривизны пространства, а материя представляет собой сгустки пространства, своеобразные холмы кривизны на фоне плоского пространства. Идеи Клиффорда использовал и Эйнштейн, который в общей теории относительности впервые показал глубокую взаимосвязь абстрактного геометрического понятия кривизны пространства с физическими проблемами гравитации (23, с. 67; 24,с. 106).

В начале XX века при создании квантовой теории Дирака, с одной стороны, и теории гравитации Эйнштейна, с другой, в теоретической физике появился в качестве объекта исследования новый уровень реальности — физический вакуум; при этом разные по своей природе теории давали разные представления о нем. Если в теории Эйнштейна вакуум рассматривался как пустое четырехмерное пространство, наделенное геометрией Римана, то в квантовой теории Дирака вакуум (глобально нейтральный) представляет собой своего рода “кипящий бульон”, состоящий из виртуальных частиц — электронов и позитронов (25, с, 89).

Для того чтобы объединить два различных представления о вакууме и создать единую теорию гравитации и электромагнетизма, в которой электромагнитное поле также происходило бы из особых геометрических свойств пространства, Эйнштейном была выдвинута программа, получившая название программы Единой Теории Поля. Именно Эйнштейн последние 35 лет своей жизни пытался сформулировать общую теорию поля или, проще говоря, открыть формулу, которая описывает весь мир, а остальные научные истины вытекают из нее, Эйнштейн полагал, что существует какое-то общее поле, которое включает в себя все уже известные физические поля. Но найти это поле и создать Единую Теорию Поля Эйнштейну так и не удалось. Однако интуиция не обманула его и на этот раз. Как будет показано ниже, такое поле действительно существует.

Тем не менее, геометризация физических полей осталась привлекательной программой для теоретической физики.
Кривизна пространства оказалась не единственной его характеристикой. В 1922 голу Э. Картан обратил внимание на возможную связь некоторых физических величин с другим геометрическим понятием — кручением пространства. Его идеи были развиты и привели к созданию теории гравитации с кручением, а позднее в общем виде — квантовой теории полей с кручением (33,с.2),

Следующий шаг, ведущий к созданию ЕТП. сделал английский физик-теоретик Р. Пенроуз, опираясь на идеи кривизны и кручения пространства- Он показал, что в основу геометрии могут быть положены, помимо поступательных, и вращательные координаты, и они определяют свойства пространства и времени, Пенроуз записал вакуумные уравнения Эйнштейна в спиновом виде (23, с. 67).

Спин (от англ. Spin — вертеться, вращаться) — собственный момент количества движения элементарной частицы, имеющий квантовую природу и не связанный с перемещением частицы как целого (18, с, 713), Концепция спина была введена в физику в 1925 году американскими учеными Дж. Уленбеком и С. Гаудсмитом, предположившими, что электрон можно рассматривать как “вращающийся волчок”, поэтому одной из важнейших характеристик элементарной частицы, кроме массы и заряда, должен стать спин. Для определенных групп элементарных частиц спиновое квантовое число принимает целочисленные или полуцелые значения. Например, спин электрона, протона, нейтрона, нейтрино и их античастиц равен 1/2; спин П- и К-мезонов равен 0; спин фотона равен 1 (70, с. 435).

Таким образом, к середине XX столетия с целью создания единой картины мира были сформированы две глобальные идеи: программа Римана—Клиффорда—Эйнштейна, согласно которой “в физическом мире не происходит ничего, кроме изменения кривизны пространства, подчиняющегося закону непрерывности”, и программа Гейзенберга—Иваненко, предполагающая построить все частицы материи из частиц спина 1/2.

Трудность в объединении этих двух программ, по мнению ученика Эйнштейна, известного теоретика Джона Уилера, состояла в том, что “...мысль о получении понятия спина из одной лишь классической геометрии представляется невозможной”. Уилер высказал эти слова в 1960 году, читая лекции в Международной школе физики им, Энрико Ферми (25, с, 89). Он еще не знал, что в результате блестящих работ Пенроуза вакуумные уравнения Эйнштейна уже были записаны в спиновом виде, что спиноры могут быть положены в основу классической геометрии и что именно они определяют топологические и геометрические свойства пространства-времени.
^ О работе Г. И. Шипова
Дальнейшее развитие проблемы “пространство-материя”, предложенное талантливым российским ученым (в настоящее время академиком РАЕН) Г. И, Шиповым, пошло по пути объединения программ Римана—Клиффорда—Эйнштейна и Гейзенберга—Иваненко,

Разобравшись досконально в существующих идеях и разработках, Г. Шипов обратил внимание на то, что в' рассматриваемых уравнениях отсутствуют компоненты вращательного движения, которое сопровождает все в природе — от элементарных частиц до Вселенной. Как выяснилось, фундаментальную роль в таком движении играют поля кручения пространства — торсионные поля, определяющие структуру материи любой природы (111, с. 3). Результатом кручения пространства в физическом проявлении оказалось поле инерции, знания о котором в современной физике практически отсутствуют (26,ч. 1,с.9).

Проблема сил и полей инерции в классической механике и других разделах физики до сих пор является одной из жгучих проблем современной науки. Силы инерции не удовлетворяют третьему закону Ньютона, они являются одновременно и внешними, и внутренними по отношению к изолированной системе; происхождение этих сил всегда было наиболее темным вопросом в теории частиц и полей (26, ч. 1, с. 4). Эта проблема для физики оказалась столь сложной, что знания о силах инерции почти не изменились со времен Ньютона.

В нашей стране периодически возникали общесоюзные дискуссии по проблемам сил инерции. Основными вопросами всегда были: реальны ли силы инерции? Что является их источником? Являются ли они внешними или внутренними по отношению к изолированной системе? Однако единого мнения по этим вопросам так и не было выработано.

Отметим, что любое явление в физике считается реальным, если оно наблюдается на опыте. Силы инерции хорошо наблюдаются на опыте в ускоренных системах отсчета, поэтому Ньютон, Эйлер. Мах, Эйнштейн и многие другие относились к этим силам как к реальным. Из опыта также следовало, что при ускоренном движении в протяженном теле возникает поле сил инерции, равнодействующая которых приложена к центру масс данного тела. Поскольку реальность полей и сил инерции подтверждалась опытами, разумно было поставить вопрос об изучении физических свойств поля инерции, порождающего силы инерции.

Именно с исследования полей инерции и начал Г. И. Шипов, Еще в 1979 году ему удалось вывести уравнение динамики полей инерции. Он нашел подход, который позволил связать поля инерции с кручением пространства (26,ч.1,с.4).

В 1988 году Шипов предложил новые фундаментальные уравнения физики, выдвигающие в качестве единого поля поле инерции. Эти уравнения трактуются как уравнения, описывающие структуру физического вакуума. Они обобщают все известные на сегодняшний момент фундаментальные уравнения физики и представляют собой самосогласованную систему нелинейных дифференциальных уравнений первого порядка, в которую входят геометризированные уравнения Гейзенберга, геометризированные уравнения Эйнштейна и геометризированные уравнения Янга—Милса.

Шипов ввел новые представления о структуре времени и пространства. Мы уже знаем, что пространство Ньютона трехмерное (X, Y, Z), наделено геометрией Евклида; пространство-время Эйнштейна четырехмерное (X, Y, Z, Ct), искривленное, наделено геометрией Римана; пространство-время в работе Шипова не только искривлено, как в теории Эйнштейна, но и закручено, как в геометрии Римана—Картана. Для учета кручения пространства Шипов ввел в геометризированные уравнения множество угловых координат: три пространственных угла (углы Эйлера) и три пространственно-временных угла (углы между временной и пространственными осями системы отсчета), что позволило ввести в теорию физического вакуума угловую метрику, определяющую квадрат бесконечно малого поворота четырехмерной системы отсчета (26, ч. 3, с, б).

Дальнейшее развитие работ Г. Шипова показало, что добавление вращательных координат приводит к всеобщей теории относительности (26, ч. 3, с. 27). Принцип всеобщей относительности обобщает как специальный, так и общий принципы относительности Эйнштейна и утверждает также относительность всех физических полей (25, с. 95), Фактически принцип всеобщей относительности представляет собой физическую реализацию философского тезиса: “Все в мире относительно”. Такова степень обобщения физического принципа, лежащего в основе теории вакуума.

Уравнения физического вакуума удовлетворяют принципу всеобщей относительности, разработанному Шиповым, — все физические поли, входящие в уравнение вакуума, имеют относительный характер; пространство событий теории вакуума имеет спинорную природу; в основном состоянии Абсолютный вакуум имеет нулевые средние значения момента, импульса и других физических характеристик.

Найденные решения уравнений Шипова описывают искривленное и закрученное пространство-время, интерпретируемое как вакуумные возбуждения, находящиеся в виртуальном состоянии. Эти решения начинают описывать реальную материю после того, как входящие в него константы (или функции) интегрирования отождествляются с физическими константами (112, с. 6).

Чрезвычайно важным является то, что уравнения вакуума и принцип всеобщей относительности после соответствующих упрощений приводят к уравнениям и принципам квантовой теории. Полученная таким образом квантовая теория оказывается детерминированной, поскольку в ее уравнениях в роли волновой функции выступает поле инерции (110, с. 12). Шипову удалось разрешить кризис в теоретической физике, получив ответы на вопросы, поставленные наукой много лет назад.

Волновая функция в уравнениях Шредингера и Дирака представляет собой реальное физическое поле — поле инерции; детерминизм и причинность в квантовой механике существуют, хотя вероятностная трактовка динамики квантовых объектов неизбежна; частица представляет собой предельный случай чисто полевого образования, при стремлении массы (или заряда) этого образования к постоянной величине. В этом предельном случае происходит возникновение корпускулярно-волнового дуализма и оптико-механической аналогии в чисто полевой теории (80, с. 50); современная квантовая теория не является полной, так как не согласуется с принципом вращательной относительности; в квантовой теории измеряется ситуация, представляющая собой комбинацию полей, образующих измерительный прибор и измеряемый объект(26,ч.1,с. 9).

Подтвердились догадки Эйнштейна, что квантовая теория не полна, и его предположения о том, что “более совершенная квантовая теория может быть найдена на пути расширения принципа относительности” (26, ч. 2, с. 48).

И сегодня квантовая теория, которую ученые называют полной и которая следует из уравнения теории физического вакуума, удовлетворяет всем требованиям Эйнштейна. На основании полученных результатов делается вывод, что мечта Эйнштейна о построении полной детерминированной квантовой теории путем обобщения уравнений общей теории относительности нашла свое воплощение в теории физического вакуума (80, с. 1).

Таким образом, принцип всеобщей относительности и теория физического вакуума связали между собой проблему сил и полей инерции в классической механике, проблему расходимостей в электродинамике и проблему завершенности квантовой механики, показав, что эти проблемы имеют единый источник — отсутствие знаний в современной физике о, пожалуй, самом фундаментальном физическом поле — поле инерции, которое выступает в роли единого поля, внутренним образом объединяющим все физические поля. Именно это поле, как выяснилось, искал великий Эйнштейн.

Создав теорию физического вакуума, Шипов сумел ответить и на вопросы, касающиеся сил инерции: силы инерции порождаются полем инерции, играющим роль единого поля в теории физического вакуума; поля инерции определяются кручением пространства, которое характеризует упругие свойства пространства, и имеют локальную природу; силы инерции являются одновременно и внешними, и внутренними по отношению к любой изолированной системе (26, ч. 3, с. 27).

Исключительно важным результатом работы Шипова является установление связи между полем инерции и торсионными полями, определяемыми кручением пространства.

Следует отметить также, что в результате исследований Г. Шилова программа единой теории поля переросла в теорию физического вакуума. Единым носителем полей (именно полей, а не взаимодействий) является физический вакуум — “фундаментальное поле”, по удачной терминологии академика И. Л. Герловина. и все поля: гравитационное, электромагнитное, торсионное (спиновое) — являются его различными фазами (84, с. 15).

Теория физического вакуума приводит к целому ряду следствий теоретического и практического характера (26,ч.3,с. 52):

• построение эйнштейновской ЕТП как теории физического вакуума;

• соответствие уравнений физического вакуума всем фундаментальным уравнениям современной физики;

• построение детерминированной квантовой теории, удовлетворяющей требованиям Эйнштейна;

• открытие новых типов фундаментальных взаимодействий. основанных на точном решении уравнений физического вакуума;

• теоретическое описание торсионного взаимодействия;

• принципиальная возможность создания движителя нового типа, использующего поля и силы инерции;

• создание излучателей и приемников монопольного электромагнитного излучения;

• создание приборов, использующих новые типы фундаментальных взаимодействий (например, торсионных) и многое другое,

Итак, российскому ученому Г. И. Шилову удалось блестяще завершить огромный труд плеяды выдающихся ученых и создать ЕТП, о которой мечтал и у истоков которой стоял великий физик Альберт Эйнштейн. Воистину, “если я видел дальше других, то только потому, что стоял на плечах гигантов” (Ньютон).

В конце XX века содержательной базой новой парадигмы стали принцип всеобщей относительности Шилова, геометрия Римана—Картана—Шилова и физический вакуум — материальная среда, передающая взаимодействия и рождающая элементарные частицы.
1   2   3   4   5   6   7   8   9   10   ...   16

Похожие:

Физика веры iconП. Д. Пруссов теоретическая физика
Теоретическая физика как физика эфира. – Николаев: Приват-Полиграфия, 2007. – Страниц 76
Физика веры iconФизика Фундаментальных взаимодействий
Физика элементарных частиц (фэч) – это наука о фундаментальных частицах и силах, действующих между ними
Физика веры icon«Недоступные для разногласий положения веры и Закона»
Исследователь обязан руководствоваться данной группой базисных положений веры, а также равнозначными ей аспектами. Мы изложим их...
Физика веры iconУчреждение образования «белорусский государственный университет транспорта»...
...
Физика веры iconМичио Каку Физика невозможного Физика невозможного Посвящается моей...
Научимся ли мы когда нибудь проходить сквозь стены? Строить звездные корабли, способные летать быстрее света? Читать мысли? Становиться...
Физика веры icon-
Ираке), чье имя Радийя ад-Дин аль-Уасити, посетил меня по пути на Хадж (паломничество). Этот шейх был человеком добродетели и веры....
Физика веры iconДепартамент культуры города москвы музей «московский дом фотографии»...
Мировоззрение Павла Флоренского на основе диалога веры и науки. Сам жизненный путь мыслителя и ученого привел его в необходимости...
Физика веры iconВ этом году наши ежемесячные встречи будут посвящены содержанию Символа...
В этом году наши ежемесячные встречи будут посвящены содержанию Символа веры — той молитвы, которой мы исповедуем нашу веру. Основным...
Физика веры iconПр физика преп. Вознюк с. В. а. 1-370

Физика веры iconФизика ядра и элементарных частиц кф-10-1

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница