Теоретические основы физической акустики глава звуковые колебания и волны


НазваниеТеоретические основы физической акустики глава звуковые колебания и волны
страница12/25
Дата публикации15.03.2013
Размер1.96 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   ...   8   9   10   11   12   13   14   15   ...   25
^

6.6. Основы фотографической звукозаписи


Фотографическая запись основана на воздействии светового потока на светочувствительный слой носителя записи - киноленты (рис. 6.7, а). Электрический сигнал от микрофона М через усилитель записи УЗ поступает на модулятор света МС. Промодулированный световой поток образует на светочувствительном слое негативной ленты НЛ узкий пишущий штрих переменной ширины или переменной интенсивности. После фотохимической обработки и копирования образуется позитивная фонограмма ПФ. При воспроизведении источник света - читающая лампа ЧЛ - с помощью оптической системы О создает в плоскости позитивной фонограммы узкий читающий штрих. Промодулированный фонограммой световой поток попадает на фотоэлемент ФЭ.


Рис. 6.7. Схема фотографической записи звука (а) и получаемые оптические фонограммы переменной ширины (б) и переменной плотности (в).
Различают фонограмму переменной ширины (рис. 6.7, б) и переменной плотности (рис. 6.7, в). В первом случае ширина фонограммы меняется, а прозрачность остается постоянной, во втором - при неизменной ширине фонограммы меняется ее прозрачность. Преимущество способа переменной плотности - более широкая полоса частот, т.к. он менее критичен к точности установки пишущего штриха. Но при записи способом переменной плотности требуется тщательный подбор режима проявления, при отступлении от него увеличиваются нелинейные искажения. Кроме того, отдача фонограммы переменной плотности меньше отдачи фонограммы переменной ширины. По указанным причинам в подавляющем большинстве случаев используют фонограмму переменной ширины. В зависимости от конструкции модулятора света фонограмма получается односторонней (рис. 6.7, б), двусторонней (симметричной) и даже с несколькими одинаковыми дорожками.

Ширину пишущего штриха выбирают равной примерно 5 мкм, что позволяет уменьшить нелинейные искажения записи и получить освещенность пишущего штриха порядка 106 лк. Это облегчает процесс записи. Ширину читающего штриха берут больше, примерно 20 мкм, чтобы увеличить световой поток, падающий на фонограмму, и соответственно увеличить фототок.

В качестве модулятора света используют преобразователи электромеханического типа, электроскопического типа и электронно-лучевого типа.

 
^

6.7.Основы магнитной аналоговой записи


Магнитная звукозапись основана на свойстве ферромагнитных материалов намагничиваться под воздействием магнитного поля и сохранять остаточное намагничивание по выходе из этого поля. По мере надобности полученную фонограмму можно стереть переменным магнитным полем.

Поле магнитной головки намагничивает ленту и преобразует временные изменения сигнала в пространственные изменения остаточной намагниченности ленты. Полученная таким образом невидимая запись представляет собой совокупность большого числа магнитиков, имеющих различную длину и напряженность поля. Лента имеет тонкую гибкую основу из лавсана, полиэфирных смол, поливинилхлорида или из других полимерных материалов; наиболее широко используется основа из полиэфирной смолы; толщина стандартных лент составляет около 50 мкм. Основа ленты покрывается порошком из магнитного окисла, состоящим из мельчайших частичек игольчатой формы. В настоящее время известны три типа -окисел железа (Feлент. Первый - 2O3). Второй - двуокись хрома (CrO2). Третий - металлический (Me). Независимо от типа окислы должны наноситься на материал основы при строго определенных условиях, позволяющих получить однородный слой толщиной около 4 мкм.


Рис.6.8. Магнитная лента в размагниченном состоянии. Домены имеют случайную полярность.

Как на ленте фиксируется сигнал и почему он не исчезает?

Магнитный слой, как уже упоминалось, изготавливается из магнитотвердого ферромагнитного материала. В любом ферромагнетике содержатся элементарные "магнитики" - домены. Даже атом с одним электроном, вращающимся с некоторой скоростью вокруг ядра, является элементарным магнитом, так как движущийся заряд электрона создает кольцевой ток, имеющий свое собственное магнитное поле. Отдельно взятые магнитные поля атомов очень слабы, но в домене все элементарные магнитные поля атомов складываются и образуют магнитное поле домена. Если ферромагнетик не намагничен, то магнитные поля отдельных доменов ориентированы хаотично по отношению друг к другу, и результирующее магнитное поле равно нулю (рис.6.8). Если же этот ферромагнетик поместить во внешнее магнитное поле, например, в виде сердечника в катушку индуктивности, то под воздействием этого поля магнитные поля доменов сориентируются в одном направлении. При этом к внешнему полю добавляются собственные поля доменов, и общее поле резко возрастает. Ферромагнетики характеризуются коэффициентом относительной магнитной проницаемости, показывающим, во сколько раз возрастает магнитная индукция в веществе по сравнению с внешним пространством. Относительная магнитная проницаемость может доходить у ферромагнетиков до нескольких десятков тысяч. Во столько же раз возрастает и магнитное поле в сердечнике. для изготовления сердечников магнитной головки используются магнитомягкие ферромагнетики. При снятии внешнего магнитного поля у таких материалов индукция исчезает. Магнитотвердые же ферромагнетики сохраняю некоторую намагниченность и после полного снятия внешнего магнитного поля. Рассмотрим, как происходит процесс намагничивания магнитотвердых материалов.

На рис.6.9 по горизонтали отложена напряженность внешнего магнитного поля Н. Она пропорциональна, например, силе тока в обмотке записывающей головки. По вертикали отложена магнитная индукция в магнитном материале. Начнем увеличивать ток в обмотке головки. На начальном участке кривой магнитная индукция в материале нарастает медленно, затем появляется участок быстрого роста индукции и, наконец, участок насыщения, когда при дальнейшем росте внешнего поля индукция не увеличивается. предельная величина индукции магнитного слоя называется индукцией насыщения Внас.



Рис.6.9. Петля гистерезиса.

Кривая называется основной кривой намагниченности. Теперь начнем уменьшать ток в обмотке головки. Домены в магнитном слое продолжают сохранять ориентацию, и магнитная индукция материала не уменьшается до нуля при обращении напряженности внешнего магнитного поля в нуль. Величина магнитной индукции при нулевом внешнем поле называется остаточной магнитной индукцией. Чем она больше, тем сильнее будет притягивать металлические предметы магнит, сделанный из этого материала, тем большим может быть уровень записи на магнитной ленте из этого же материала. Чтобы размагнитить материал слоя, надо подать в обмотку ток противоположного направления. Напряженность поля, при которой индукция В обратится в нуль называется коэрцитивной силой. Чем больше коэрцитивная сила, тем труднее размагнитить материал, тем меньше по размеру соседние домены с противоположной намагниченностью сохраняют ее. Увеличив затем ток в обмотке (в обратном направлении), намагнитим материал, но "наоборот". Периодически перемагничивая материал, получаем некоторую замкнутую кривую, называемую петлей гистерезиса. Чем больше площадь петли, тем большую работу на перемагничивание надо затратить.

Как производится запись сигналов?

Непосредственно записать сигнал звуковых частот, подав его на выводы обмотки головки, конечно можно, но при этом качество записи будет совершенно неудовлетворительным. Для объяснения этого обратимся к основной кривой намагниченности (рис. 6.10). Она показана для намагничивания в обоих направлениях. Поскольку начальный участок кривой пологий, то намагничивание ленты при слабых сигналах происходит плохо. Искажения сигнала при этом будут недопустимо велики. Современный метод записи, применяющийся в аналоговых магнитофонах, использует линеаризацию кривой намагниченности с помощью высокочастотного сигнала подмагничивания. При записи в обмотку головки наряду со звуковым подается высокочастотный сигнал, имеющий значительно больший уровень, чем звуковой. Высокочастотное магнитное поле, вызываемое этим сигналом, как бы раскачивает домены ферромагнетика, разрушая жесткие связи между ними и облегчая намагничивание ленты. Напряжение подмагничивания обеспечивает запись сигналов с использованием наиболее линейных участков основной кривой намагниченности. Так как напряжение подмагничивания успевает перемагнитить ленту несколько раз за время прохода мимо зазора головки, то эти колебания практически не остаются в записи.






Рис. 6.10. Процесс магнитной записи: запись без подмагничивания (а); запись с высококачественным подмагничиванием (б).

 
1   ...   8   9   10   11   12   13   14   15   ...   25

Похожие:

Теоретические основы физической акустики глава звуковые колебания и волны iconВлияние звука на сознание и здоровье человека
Звуковые колебания и частоты проницают нас постоянно. Не многие люди знают о том, что звуковые волны, в частности ультразвуки и инфразвуки,...
Теоретические основы физической акустики глава звуковые колебания и волны iconФизика веры
Когда над свечой читают молитвы, звуковые вибрации вызывают колебания плазмы, и она переводит их в торсионные волны, которые восходят...
Теоретические основы физической акустики глава звуковые колебания и волны iconГидроакустика раздел акустики, в к-ром изучаются характеристики звуковых...
Большое значение Г. связано с тем, что звуковые волны в океанах и морях являются единств видом излучения, способным распространяться...
Теоретические основы физической акустики глава звуковые колебания и волны iconТема: Механические колебания и волны
Дано уравнение колебательного движения х=0,45 sin 5П в см. Определить амплитуду, период колебаний и смещение при t=0,1 с
Теоретические основы физической акустики глава звуковые колебания и волны iconВ. В. Богачев теоретические основы
...
Теоретические основы физической акустики глава звуковые колебания и волны iconТеория и методика физической культуры общие основы теории
Мзз теория и методика физической культуры (общие основы теории и методики физического воспитания; теоретико-методические аспекты...
Теоретические основы физической акустики глава звуковые колебания и волны iconУчебное пособие для учащихся
Н. Л. Моргунова (глава I), С. А. Попов (глава II), Ю. С. Зобов (главы Ш, V § 1, 2, 3, 5), П. Е. Матвиевский (глава IV), Ю. П. Злобин...
Теоретические основы физической акустики глава звуковые колебания и волны iconТеоретические вопросы по курсу "Информатика"
Аппаратное обеспечение пк. Представление данных в пк. Внутренние устройства системного блока и их характеристики (материнская плата,...
Теоретические основы физической акустики глава звуковые колебания и волны iconСвободные гармоничесие колебания. Колебания с одной степенью свободы....

Теоретические основы физической акустики глава звуковые колебания и волны iconУказания к выполнению практического задания по дисциплине: «Правовые...
Модуль Тема №5 Социально-правовое положение специалистов сферы физической культуры и спорта. Контрактирование в сфере физической...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница