1 топологические параметры электрических цепей


Название1 топологические параметры электрических цепей
страница15/27
Дата публикации16.03.2013
Размер2.35 Mb.
ТипАнализ
userdocs.ru > Физика > Анализ
1   ...   11   12   13   14   15   16   17   18   ...   27
^

11.3. Работа электрической машины постоянного тока
в режиме генератора


    Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

http://nwpi-fsap.narod.ru/lists/oee_matusko/risunki/ris_556.gif

      где  U - напряжение на зажимах генератора; 
             R
я - сопротивление обмотки якоря.

                    http://nwpi-fsap.narod.ru/lists/oee_matusko/risunki/ris_557.gif            (11.2)

      Уравнение (11.2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы. 
      На рис. 11.5 схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.


     Воспользовавшись правилом левой руки, видим, что электромагнитные силы создают электромагнитный момент Мэм, препятствующий вращению якоря генератора. 
     Чтобы машина работала в качестве генератора, необходимо первичным двигателем вращать ее якорь, преодолевая тормозной электромагнитный момент.
http://nwpi-fsap.narod.ru/lists/oee_matusko/risunki/ris_558.gif

43 синхронные машины.

Основные понятия и принцип действия

Синхронные машины являются основными источниками электрической энергии в мире. Они применяются также в качестве двигателей преимущественно большой мощности, а также малой мощности в системах автоматики. В последнее время область их применения расширяется. На их основе создаются высокоточные приборные приводы с уникальными характеристиками.

Название машины связано с тем, что в статическом режиме работы ее ротор вращается с такой же скоростью, с какой вращается магнитное поле, т.е. синхронно с полем.

онструкция ротораhttp://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image940.gif

Синхронная машина является машиной переменного тока. Ее статор в принципе ничем не отличается от статора асинхронной машины. Ротор же представляет собой постоянный магнит или электромагнит, обмотка которого питается постоянным током через контактные кольца и щетки. Эта обмотка называется обмоткой возбуждения.

Число пар полюсов ротора p определяется скоростью вращения машины по известному выражению для скорости вращения магнитного поля -. У тихоходных машин, например генераторов гидроэлектростанций, число пар полюсов может быть несколько десятков. У быстроходных, например, у генераторов тепловых электростанций, число пар полюсов обычно равно 1. Полюсы ротора могут конструктивно выполняться отдельно (рис. 1) или формироваться обмоткой распределенной в пазах цилиндрического ротора (рис.2). В первом случае ротор называется явнополюсным, во втором - неявнополюсным. Неявнополюсные роторы используются в быстроходных машинах потому, что их конструкция обладает большей прочностью и может противостоять значительным центробежным силам.

http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image753.gif

Принцип действия

Принцип действия синхронных машин основан на взаимодействии магнитных полей статора и ротора. Схематически вращающееся магнитное поле статора можно изобразить полюсами магнитов вращающихся в пространстве со скоростью вращения магнитного поля статора http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image773.gif(рис. 1). Поле ротора также можно изобразить в виде постоянного магнита, вращающегося синхронно с полем статора.

При отсутствии внешнего вращающего момента, приложенного к валу машины, оси полей статора и ротора совпадают (рис. 1 а)). Силы притяжения F действуют на ротор вдоль оси полюсов и взаимно компенсируют друг друга. Угол между осями полей статора и ротора равен нулю.http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image774.gif

Если на вал машины действует тормозной момент, то ротор смещается в сторону запаздывания на угол  (рис. 1 б). В результате силы притяжения F раскладываются на составляющие, направленные вдоль оси полюсов ротора http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image770.gif(осевая составляющая) и перпендикулярно оси полюсов http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image771.gif(тангенциальная составляющая). Осевые составляющие взаимно компенсируются, а тангенциальные создают вращающий момент http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image772.gif, компенсирующий внешний момент, приложенный к валу (D - диаметр точек приложения тангенциальных сил). Машина при этом работает в режиме двигателя, компенсируя расходуемую на валу механическую мощность потреблением активной мощности из сети питающей статор.

В случае если к ротору прикладывается внешний момент, создающий ускорение, т.е. действующий в направлении вращения вала, картина взаимодействия полей меняется на обратную. Направление углового смещения  изменяется на противоположное, соответственно изменяется направление тангенциальных сил и направление действия электромагнитного момента. В этом случае он становится тормозным, а машина работает генератором, преобразующим подводимую в валу машины механическую энергию, в электрическую энергию, отдаваемую в сеть, питающую статор.http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image776.gif

Вращающий момент в синхронной машине может возникать и при отсутствии собственного магнитного поля у ротора. Пусть, например, обмотка возбуждения явнополюсного ротора отключена от питания. Тогда картина магнитного поля машины будет иметь вид, представленный на рисунке 2. Здесь явнополюсный ротор связан с системой координат d-qтаким образом, что ось d-d совмещена с осью симметрии в направлении максимальной магнитной проводимости, а осьq-q с направлением минимальной магнитной проводимости. Ось d-d совпадает также с осью магнитного поля возбужденного ротора и называется продольной осью, а ось q-q соответственно – поперечной.

При отсутствии внешнего момента явнополюсный ротор займет положение, при котором продольная ось будет совпадать с осью полюсов магнитного поля статора. Это положение соответствует минимальному магнитному сопротивлению для магнитного потока статора.

Если на вал машины будет действовать тормозной момент, то ротор отклонится на угол . При этом магнитное поле статора деформируется, т.к. магнитный поток будет стремиться замкнуться по пути наименьшего сопротивления. Магнитный поток определяется через магнитные силовые линии, т.е. линии, направление которых в каждой точке соответствует направлению действия силы, поэтому деформация поля приведет, также как и в случае возбужденного ротора, к появлению результирующей тангенциальной силы http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image777.gif. Отличие от возбужденного ротора будет состоять в том, что тангенциальная сила будет функцией двойного угла . Это отличие возникает вследствие того, что у возбужденного ротора возможно только одно положение устойчивого равновесия при http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image778.gif, а невозбужденный ротор может находиться в равновесии при http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image779.gif.

Вращающий момент, возникающий в машине с невозбужденным ротором за счет тангенциальных сил называется реактивным моментом и его зависимость от  выражается функцией http://www.ets.ifmo.ru/usolzev/seiten/u2/sh/image780.gif.

Очевидно, что необходимым условием возникновения реактивного момента является магнитная асимметрия ротора.

Рассмотренные выше процессы в синхронной машине наглядно демонстрируют принцип обратимости электрических машин, т.е. способность любой электрической машины изменять направление преобразования энергии на противоположное. В синхронных машинах для перехода от режима работы двигателем в режим генератора достаточно изменить направление (знак) момента нагрузки на валу.

44 материалы для изготовления полупроводниковых приборов.

Требования к полупроводниковым материалам

К полупроводниковым материалам, применяемым для изготовления различных классов полупроводниковых приборов и интегральных микросхем, предъявляются высокие требования. Пригодность того или другого полупроводникового материала определяется в первую очередь его параметрами и свойствами. Требования к оптическим, термическим, термоэлектрическим и электрическим свойствам полупроводниковых материалов диктуются эксплуатационными параметрами готовых приборов и ИМС. Особые требования предъявляют к таким свойствам полупроводниковых материалов, как тип электропроводности, концентрация, подвижность, удельное сопротивление, время жизни, диффузионная длина носителей заряда.

Рассмотрим основные требования, которые предъявляются к большинству полупроводниковых материалов.

Монокристалличность структуры. Для изготовления большинства приборов требуются полупроводниковые материалы в виде пластин, вырезанных из монокристаллических слитков. Монокристаллические слитки в виде стержней круглого сечения получают методом направленной кристаллизации расплавов. В последнее время широкое применение находят монокристаллические эпитаксиальные пленки (однослойные н многослойные).

Однородность распределения легирующих примесей. Легирующие примеси в полупроводниковых материалах должны быть распределены равномерно по всему объему монокристаллического слитка. Это требование обеспечивает одинаковые параметры всей партии пластин, изготовленных из одного слитка полупроводникового материала. Кроме того, данное требование дает возможность обеспечить серийный массовый выпуск полупроводниковых приборов и интегральных микросхем с малым разбросом электрических параметров.

Стойкость к атмосферному воздействию. Большинство полупроводниковых материалов удовлетворяет этому требованию. Такие материалы, как германий, кремний, карбид кремния и др., обладают высокой стойкостью к воздействию окружающей среды. Однако известны полупроводниковые соединения, которые не стойки во влажной атмосфере. К таким материалам относятся некоторые соединения типа ?????, например антимонид, арсенид и фосфид алюминия, гидролизующиеся во влажной атмосфере. Это обстоятельство, несмотря на ряд очень хороших для некоторых классов полупроводниковых приборов свойств, является серьезным препятствием для широкого применения этих соединений.

Температуростойкость. Требования по температуростойкости диктуются максимальными рабочими температурами, при которых применяются полупроводниковые приборы и интегральные микро-

12

схемы. Верхний предел рабочих температур полупроводниковых материалов зависит от их ширины запрещенной зоны. Так, для германия он равен 80—Ю0°С, для кремния 180—200°С. Арсенид галлия способен выдерживать температуру до 350°С, фосфид галлия— до 500—600°С, а карбид кремния — до 700—800°С.

Полупроводниковые приборы эксплуатируются и при низких температурах. Поэтому энергия ионизации легирующих примесей полупроводникового материала должна быть значительной при температурах до —60°С.

Верхний предел рабочей частоты полупроводниковых диодов, транзисторов и интегральных микросхем определяется значениями подвижности электронов и дырок, а также диэлектрической проницаемостью материалов, из которых они выполнены. Для данного типа электропроводности полупроводникового материала подвижность имеет максимальное значение в некомпенсированном материале. Поэтому полупроводниковый материал, применяемый для изготовления полупроводниковых приборов и ИМС, должен обладать донорными или акцепторными свойствами. Для большинства полупроводниковых приборов и ИМС, за исключением импульсных, необходим материал с достаточно большим временем жизни неосновных носителей заряда. Для изготовления импульсных полупроводниковых приборов используется материал с малым временем жизни неосновных носителей зарядов.

Для изготовления приборов, в которых используется эффект Холла, лучше всего подходят полупроводниковые материалы с высокой подвижностью и малой концентрацией носителей заряда, обеспечивающие большое холловское напряжение.

Для изготовления магнитоэлектрических приборов применяют арсенид индия и теллурид ртути.

Для изготовления термоэлектрических приборов требуются полупроводниковые материалы, обеспечивающие максимальный коэффициент эффективности, т. е. обладающие высокой электропроводностью и низкой теплопроводностью. Такие свойства имеют антимонид цинка, теллурид и селенид висмута и их твердые растворы.

При выборе материалов для изготовления фотоприборов руководствуются в первую очередь спектральной чувствительностью полупроводникового материала и особенно значением края поглощения. Для уменьшения инерционности фотоприборов обычно используют материалы с малым временем жизни неосновных носителей заряда. Для изготовления фотопреобразователей (солнечных батарей) особое значение имеет ширина запрещенной зоны, определяющая эффективность работы этой группы приборов.

Полупроводниковые материалы, применяемые для производства лазеров, должны быть чистыми и обладать совершенной структурой. Посторонние примеси и дефекты приводят к появлению внутри запрещенной зоны промежуточных энергетических уровней. Материал для полупроводниковых лазеров должен иметь высокое значение подвижности при данной концентрации носителей заряда.

В качестве материала для светодиодов используются полупроводники, обладающие способностью к излучательной рекомбинации: арсенид и фосфид индия и галлия, карбид кремния, сульфид цинка и др. Основной параметр светодиодов — длина волны излучения — зависит от свойств исходного полупроводникового материала и, в частности, от ширины запрещенной зоны. Для полупроводниковых материалов, дающих излучение в видимой области спектра, цвет излучения зависит от типа вводимой примеси и от положения их энергетических уровней. Так, зеленое излучение фосфида галлия может быть изменено на красное с помощью легирования исходного полупроводникового материала кислородом.

Следует отметить, что количество типов полупроводниковых приборов и интегральных микросхем очень велико. Каждый из этих приборов в зависимости от принципов своей работы и требований электрических параметров нуждается в полупроводниковом материале с определенными свойствами.

§ 2.2. Классификация полупроводниковых материалов

Полупроводниковые материалы по химическому составу можно разделить на две группы: простые и сложные.

К простым полупроводниковым материалам относятся германий и кремний. Практическое применение для изготовления интегральных схем нашел только кремний.

В группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три элемента или более. В качестве примера таких соединений можно привести GaAs, Bi2Te3, ZnSiP2 и др. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными соединениями. Такие соединения, как это принято в неорганической химии, имеют наименования того компонента, у которого металлические свойства выражены слабее. Так, бинарные соединения,, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами.

Различные группы сложных полупроводниковых материалов объединяют по признаку номера группы Периодической системы элементов Д. И. Менделеева, к которым принадлежат компоненты соединения. Группы полупроводниковых соединений обозначают буквами латинского алфавита: А—-первый компонент соединения, В — второй, С — третий и т. д. Буквы, в свою очередь, имеют цифровые индексы. Римские цифры, проставляемые над буквами, обозначают группу элемента в таблице Менделеева. Арабские цифры, проставляемые под буквами, обозначают стехиометричеекий коэффициент. Например, бинарное соединение фосфид индия InP имеет обозначение ?????, теллурид висмута Bi2Te3—Aj B3vi соединение типа ZnSiPa —AHB^-Cj и т. д.

Твердые растворы полупроводниковых материалов обозначают символами входящих в них элементов и нижними индексами, которые определяют их атомную долю в твердом растворе. Например, твердый раствор германий-кремний обозначают в общем виде Sii^Ge*, а между соединениями InAs и InP — формулой InAsi-xPa;, где х—атомная доля компонента твердого раствора:

Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводников в широком интервале температур, включая комнатную (~ 300 К), являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 104−10~10 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

45 полупроводниковые резисторы.

^ Полупроводниковый резистор — полупроводниковый прибор с двумя выводами, в котором используется зависимость электрического сопротивления полупроводника от температуры, освещенности, напряжения и других параметров. В полупроводниковых резисторах применяют полупроводник, равномерно легированный примесями. В зависимости от типа примесей удаётся получить различные зависимости сопротивления от внешнего воздействия.

Классификация и условные обозначения полупроводниковых резисторов.

^ Тип резисторов

Условное обозначение

Линейные резисторы

resistor 2.svg

Варисторы

varistor.svg

Тензорезисторы

tensoreristor.png

Терморезисторы

thermoresistor.svg

Фоторезисторы

photoresistor.svg

Первые две группы полупроводниковых резисторов в соответствии с этой классификацией — линейные резисторы и варисторы — имеют электрические характеристики, слабо зависящие от внешних факторов: температуры окружающей среды, вибрациивлажностиосвещённости и др. Для остальных групп полупроводниковых резисторов, наоборот, характерна сильная зависимость их электрических характеристик от внешних факторов. Так, характеристики терморезисторов существенно зависят от температуры, характеристики фоторезисторов — от освещённости, характеристики тензорезисторов — от механических напряжений.
1   ...   11   12   13   14   15   16   17   18   ...   27

Похожие:

1 топологические параметры электрических цепей iconКалендарно-тематический план проведения занятий
Основные понятия теории цепей. Идеализация источников энергии. Основные законы электрических цепей. Эквивалентные преобразования...
1 топологические параметры электрических цепей iconКурсовая работа по курсу «Основы теории электрических цепей» Тема:...
Связь между импульсной характеристикой и передаточной функцией цепи
1 топологические параметры электрических цепей iconДисциплина "Электротехника" Группа м-211 Семестр 3 Учебный год 2012/2013...
Основные понятия теории цепей. Идеализация источников энергии. Основные законы электрических цепей. Эквивалентные преобразования...
1 топологические параметры электрических цепей iconИсследование линейных электрических цепей постоянного тока с последовательным...
...
1 топологические параметры электрических цепей iconРуководство предназначено для подготовки и проведения первых четырех...
Лабораторные работы по теории электрических цепей выполняются после того, как необходимый материал рассмотрен на лекциях и практических...
1 топологические параметры электрических цепей iconЛабораторная работа №6 Изучение влияния на сигнал различных элементов...
Цель работы: изучить влияние на сигнал различных элементов электрических цепей с помощью программного пакета ewb
1 топологические параметры электрических цепей iconЭкзаменационные вопросы по дисциплине «Теория электрических цепей»
Электрическое поле. Графическое изображение электрических полей. Напряжённость электрического поля. Потенциал. Напряжение. Электрическое...
1 топологические параметры электрических цепей iconЭкзаменационные вопросы по дисциплине «Общая электротехника и электроника»
Расчет электрических цепей постоянного тока с одним источником методом свертывания
1 топологические параметры электрических цепей iconЛинейные цепи постоянного тока
Расчёт электрических цепей является одной из основных задач при изучении электротехники, а впослед-ствии – и электроники
1 топологические параметры электрических цепей iconИсследование линейной электрической цепи постоянного тока со смешанным соединением резисторов
Усовершенствовать навыки сборки электрических цепей и пользования электроизмерительными приборами
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница