Законов мироздания


Скачать 10.36 Mb.
НазваниеЗаконов мироздания
страница6/66
Дата публикации20.07.2013
Размер10.36 Mb.
ТипЗакон
userdocs.ru > Физика > Закон
1   2   3   4   5   6   7   8   9   ...   66

БЕЛКИ


1953
ДНК


1958

^ ЭКСПЕРИМЕНТ МИЛЛЕРА—ЮРИ
центральная ДОГМА

молекулярной


1961
биологии
ГЕНЕТИЧЕСКИЙ КОД
В основе жизнедеятельности любого организма лежат химические процессы. В каждой клетке вашего тела происходят тысячи химических реакций, и совокупность этих реакций определяет вашу индивидуальность. В этой грандиозной химической системе важнейшую роль играют молекулы белков.

Давайте в начале нашей беседы о белках поговорим об их строении. При конструировании сложных молекул вы можете пойти двумя путями: либо использовать систему модулей и собирать всевозможные крупные молекулы из небольшого числа структурных единиц, либо изготавливать каждую молекулу по индивидуальному плану. Вспомните старые и новые методы строительства. Раньше все элементы конструкции изготавливали только для одного здания, и в других зданиях они не встречались. В наше время такие здания (если их только можно отреставрировать) считаются очень красивыми и ценятся выше современных построек. Современный же метод строительства состоит в том, чтобы взять уже готовые однотипные детали, или модули (кирпичи, окна, двери), и собрать из них здание. Но и в такой системе, компонуя серийные детали по-разному, можно построить самые разнообразные сооружения. Аналогичный подход реализуется в живых системах — структурная сложность достигается за счет модульного принципа построения. Именно такой подход логичен с точки зрения теории эволюции, поскольку он позволяет последовательно усложнять структуры по мере появления новых модулей.

Основной структурной единицей белков являются аминокислоты. Молекулы этого класса имеют сходную структуру, немного различаясь в деталях. Они представляют собой цепочку атомов, на одном конце которой находится положительно заряженный ион водорода (Н+), а на другом — отрицательно заряженная гид-роксильная группа (ОН-), состоящая из кислорода и водорода. От основной цепи ответвляются боковые группы, различные для разных аминокислот. В живых организмах насчитывается 21 аминокислота.

Из аминокислот строится белок. Этот процесс напоминает нанизывание бусинок на нить. При сближении двух аминокислот ион водорода (Н+) одной из них соединяется с ОН--группой второй, и две аминокислоты связываются друг с другом с высвобождением молекулы воды. При этом возможны самые разные сочетания аминокислот. Последовательность аминокислот в «бусах» называется первичной структурой белка. Поскольку бусиной может быть любая из 21 аминокислоты, то даже для коротких белков существует огромное количество возможных вариантов первичной структуры. Например, существует более 10 триллионов способов собрать белок длиной всего в 10 аминокислот!

После того как определена первичная структура белка, под действием электростатических взаимодействий между различными боковыми группами аминокислот, а также между аминокислотами и окружающей их водой белок принимает сложную трех-
мерную форму. Для нас важнее всего белки, которые сворачиваются в сложные сферические структуры, поскольку именно они регулируют химические реакции в живых организмах. (Другие типы белков, например те, из которых состоят волосы и прочие структуры тела, имеют не такую форму.)

При взаимодействии сложных молекул между определенными атомами каждой из молекул образуется химическая связь. Одной лишь способности молекул к взаимодействию недостаточно для образования связи. Две молекулы должны сблизиться и принять такую ориентацию, при которой атомы, способные образовывать химические связи, могли бы состыковаться, как космические корабли на орбите. Поэтому трехмерная структура имеет первостепенное значение для химических процессов, идущих в живых организмах.

Трудно поверить, чтобы две сложные молекулы, предоставленные сами себе, случайным образом расположились бы в пространстве так, чтобы стало возможным их взаимодействие. Для протекания химической реакции с заметной скоростью необходимо участие молекул, называемых ферментами (см. катализаторы и ферменты). Фермент притягивает обе молекулы к себе и придает им ориентацию, обеспечивающую взаимодействие. Как только взаимодействие произошло, фермент, выполнивший свою работу, высвобождается и может повторить эту операцию со следующей парой молекул.

Благодаря своей сложной структуре белки идеально справляются с ролью ферментов. Каждой первичной структуре соответствует определенная форма молекулы белка и, следовательно, определенная химическая реакция, которую этот белок катализирует. Во всех живых организмах первичная структура белка записана на молекуле ДНК (см. центральная догма молекулярной биологии). Таким образом, ДНК держит под контролем весь организм, определяя спектр образующихся белков и, таким образом, возможные химические реакции.

В принципе, по первичной структуре белка можно было бы предсказать, какую форму будет иметь его молекула, а значит, предсказать и природу химической реакции, в которой этот белок будет участвовать. В действительности же эта проблема укладки белка настолько сложна, что пока ее невозможно вычислить даже при помощи лучших компьютеров и программного обеспечения. На сегодняшний день это одна из основных нерешенных проблем молекулярной биологии.
Науки о жизни
Биологические молекулы

Биологические молекулы имеют модульное строение. К числу важных классов биологических молекул относятся белки, углеводы, липиды и нуклеиновые кислоты.

^ Множество других молекул в клетке играют роль «энергетической валюты»
Х1Х-ХХ • БИОЛОГИЧЕСКИЕ МОЛЕКУЛЫ
1859 • ТЕОРИЯ ЭВОЛЮЦИИ
нач. • БЕЛКИ 1950-х
1952 • ЭКСПЕРИМЕНТ ХЕРШИ—ЧЕЙЗ


1953

1953 • ДНК
^ ЭКСПЕРИМЕНТ МИЛЛЕРА—ЮРИ
1958 • ЦЕНТРАЛЬНАЯ ДОГМА МОЛЕКУЛЯРНОЙ БИОЛОГИИ
1961 • ГЕНЕТИЧЕСКИЙ КОД
Жизнь — таинственная, сложная, загадочная — не что иное, как совокупность достаточно крупных молекул и довольно простых химических реакций. Если бы вам понадобилось конструировать крупные молекулы, вы пошли бы по одному из двух путей. Либо, как в кустарном ювелирном деле, вы стали строить каждую молекулу «с нуля», проделывая каждый раз уникальную работу. Либо — этот путь используется в современных строительных технологиях — вы бы изготовили набор простых молекул, из которых можно собирать самые разнообразные молекулы большего размера, сочетая модули тем или иным образом. Оказывается, именно такое модульное строение имеют биологические молекулы. Согласно ТЕОРИИ ЭВОЛЮЦИИ, таким и должен был быть самый простой путь к крупным молекулам, поскольку в начале эволюционного процесса необходимость в конструировании очень сложных молекул отсутствовала. Со временем же могли добавляться новые модули, расширяя коллекцию крупных разнородных элементов, что вполне соответствует духу эволюции.
Белки

Основной структурной единицей белков являются молекулы аминокислот. Чтобы понять, что такое аминокислота, представьте себе совокупность атомов, у которых с одной стороны наружу выступает водород, с другой — соединенные между собой кислород и водород, а посередине расположены разнообразные другие компоненты. Подобно тому как бусины нанизываются на нить, из этих аминокислот собираются белки — ион водорода (Н+) одной аминокислоты объединяется с ионом гидроксила (ОН-) другой аминокислоты с образованием молекулы воды. (Представьте, как каждый раз при соединении двух аминокислотных молекул между ними пробегает капелька воды.) Среди белков самую важную роль играют белки-ферменты (см. катализаторы и ферменты), регулирующие химические реакции в клетках; но белки также являются важными структурными компонентами живых организмов. Например, ваши волосы и ногти состоят из белков.
Углеводы

Углеводы содержат кислород, водород и углерод в соотношении 1 : 2 : 1. Во многих живых системах молекулы углеводов выполняют роль источников энергии. Одним из важнейших углеводов можно считать сахар глюкозу, содержащую шесть атомов углерода (С6Н12О6). Глюкоза — конечный продукт фотосинтеза и, следовательно, основа всей пищевой цепи в биосфере. Соединяя молекулы глюкозы, как основные строительные модули, можно получить сложные углеводы. Как и белки, углеводы играют вспомогательную роль в клетках, поскольку входят в клеточные структуры. Например, растительные волокна состоят из целлюлозы, которая представляет собой вереницу сцепленных особым образом молекул глюкозы.
Липиды

Липиды — это нерастворимые в воде органические молекулы. Вы получите правильное представление о липидах, если вообразите капельки жира, плавающие на поверхности бульона. В живых организмах липиды выполняют две важные функции. Один класс молекул — фосфолипиды — состоят из маленькой головки, содержащей фосфатную группу (атом фосфора, соединенный с четырьмя атомами кислорода), и длинного углеводородного хвоста. Углеводородный хвост этой молекулы гидрофобен, то есть энергетическое состояние молекулы минимально, когда этот хвост находится не в воде. Напротив, фосфатная головка гидрофильна, то есть энергетическое состояние молекулы минимально при контакте головки с водой. Если поместить молекулы фосфолипидов в воду, они будут стремиться достичь минимального энергетического состояния и выстроятся таким образом, что их хвосты окажутся вместе, а головки — врозь. Такая двухслойная структура очень стабильна, поскольку головки будут в контакте с водой, но вода будет вытеснена из области, окружающей хвосты молекул. Для перемещения липидным молекулам необходима энергия — либо чтобы удалить гидрофильные участки из воды, либо чтобы поместить в воду гидрофобные участки. Из таких липидных двухслойных структур состоят клеточные мембраны и мембраны, разделяющие компоненты клетки. Эти пластичные и прочные молекулы отделяют живое от неживого.

Кроме того, в липидах запасается энергия. Липиды могут накапливать примерно вдвое больше энергии на единицу массы, чем углеводы. Вот почему, когда вы переедаете и ваш организм хочет запасти энергию на случай непредвиденных обстоятельств в будущем, когда пищи не будет, он станет запасать ее в форме жира. На этом простом факте строится многомиллиардная индустрия диетических продуктов.
Нуклеиновые кислоты

Молекулы ДНК и РНК (см. центральная догма молекулярной биологии) переносят информацию о химических процессах, идущих в клетке, и участвуют в передаче содержащейся в ДНК информации в цитоплазму клетки. В ДНК живого организма закодированы белки-ферменты, которые катализируют все химические реакции, происходящие в этом организме.
Молекулы-переносчики энергии

Жизнедеятельность требует затрат энергии. В частности, нужно, чтобы энергия, произведенная в одном месте, могла быть использована в другом. Эту функцию в клетке осуществляет целая армия специализированных молекул. Пожалуй, самые важные из них — аденозин трифосфат (АТФ) и аденозин дифосфат (АДФ).
Обе молекулы устроены так: группа из атомов углерода, водорода и азота (она называется аденин) присоединена к молекуле рибозы (это сахар), и все это вместе крепится к хвосту из фосфатов. Из названий молекул понятно, что в хвосте АДФ содержится два фосфата, а в хвосте АТФ — три. Когда в клетке происходит химический процесс, например фотосинтез, образующаяся энергия идет на присоединение третьего фосфата к хвосту АДФ. Полученная молекула АТФ затем переносится в другие части клетки. Там запасенная энергия может быть использована в других химических процессах: она выделяется при отщеплении последнего фосфата от АТФ, в результате чего АТФ вновь превращается в АДФ.

Как мы уже упоминали, существуют и другие молекулы, которые переносят энергию в клетке. Набор таких молекул чем-то напоминает разные варианты оплаты счетов. Вы можете выбрать наличные, банковский перевод, кредитную карту и т.д. — в зависимости от того, какой способ вам удобнее. Так же и клетка для поддержания своей жизнедеятельности может использовать АТФ (эквивалент наличных денег) или любую другую из большого набора более сложных молекул.
Астрономия
Большой взрыв

Вселенная возникла около 15 миллиардов лет назад в виде раскаленного сгустка сверхплотной материи, и с тех пор она расширяется и остывает
Астрономы употребляют термин «Большой взрыв» в двух взаимосвязанных значениях. С одной стороны, этим термином называют само событие, ознаменовавшее зарождение Вселенной около 15 миллиардов лет назад; с другой — весь сценарий ее развития с последующим расширением и остыванием.

Концепция Большого взрыва появилась с открытием в 1920-е годы закона хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.
1742, 1823
1912
1917
1929
1948
1948
1980-е
1981



^ ПАРАДОКС ОЯЬБЕРСА
ЗАВИСИМОСТЬ

ПЕРИОД—

СВЕТИМОСТЬ
КОСМОЛОГИЧЕСКАЯ ПОСТОЯННАЯ
ЗАКОН ХАББЛА
ТЕОРИЯ

^ СТАЦИОНАРНОЙ ВСЕЛЕННОЙ
БОЛЬШОЙ ВЗРЫВ
РАННЯЯ ВСЕЛЕННАЯ
ИНФЛЯЦИОННАЯ

СТАДИЯ

РАСШИРЕНИЯ

ВСЕЛЕННОЙ
Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около -270°С (3 К), т.е. всего на три градуса выше абсолютного нуля.

Простая аналогия поможет вам интерпретировать этот результат. Представьте, что вы сидите у камина и смотрите на угли. Пока огонь горит ярко, угли кажутся желтыми. По мере затухания пламени угли тускнеют до оранжевого цвета, затем до темно-красного. Когда огонь почти затух, угли перестают испускать видимое излучение, однако, поднеся к ним руку, вы почувствуете жар, что означает, что угли продолжают излучать энергию, но уже в инфракрасном диапазоне частот. Чем холоднее объект, тем ниже излучаемые им частоты и больше длина волн (см. закон стефана—больцмана). По сути, Пензиас и Уилсон определили температуру «космических углей» Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.
Изобилие легких элементов

ранняя вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут,
прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер (так называемый нуклеосинтез) на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и в незначительном количестве литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже — при формировании звезд (см. эволюция звезд).

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями. По моему мнению, это лучшее подтверждение гипотезы Большого взрыва.

Помимо двух приведенных выше доказательств (микроволновой фон и соотношение легких элементов) недавние работы (см. инфляционная стадия расширения вселенной) показали, что сплав космологии Большого взрыва и современной теории элементарных частиц разрешает многие кардинальные вопросы устройства Вселенной. Конечно, проблемы остаются: мы не можем объяснить саму первопричину возникновения Вселенной; не ясно нам и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено более чем достаточно.
АрНО АллАН ПЕНЗиАО (Arno Allan Penzias, р. 1933) и РОБЕРт вудРО вильсОН (Robert Woodroe Wilson, р. 1936) — американские физики. Пензиас родился в Мюнхене, эмигрировал в США вместе с родителями в 1940 году. Уилсон родился в Хьюстоне (США). Оба приступили к работе в лабораториях Bell в Холмдейле, штат Нью-Джерси в начале 1960-х годов. В 1963 году перед ними была поставлена задача выяснить природу шумов в радиодиапазоне, создающих помехи для радиосвязи. Отметя

целый ряд вероятных причин (вплоть до загрязнения антенн голубиным пометом), они пришли к выводу, что источник стабильного фонового шума находится за пределами нашей Галактики. Иными словами, это был космический радиационный фон, предсказанный астрофизиками-теоретиками, включая Роберта Дика (Robert Dick), Джима Пиблза (Jim Peebles) и Георгия Гамова (George Gamov). За свое открытие Пензиас и Уилсон были удостоены в 1978 году Нобелевской премии по физике.

* Любопытно, что в авто­ритетнейшем Словаре научных биографий в статье об Оккаме, занима­ющей несколько страниц, ни разу не упоминается его «бритва». — Прим. автора.

Бритва Оккама

Самое простое объяснение, скорее всего, и есть правильное
В XIV веке Уильям Оккам был одним из самых известных философов своего времени, но сегодня мы знаем его лишь как автора принципа простоты, который он сформулировал в одной из своих книг, предложив «сбривать» лишнюю сложность в аргументации. Этот принцип получил название «бритва Оккама»* и звучал приблизительно так: «Non sunt entia multiplicanda praeter necessitatem», что означает: «Не нужно множить сущности без необходимости». Это предупреждение о том, что не надо прибегать к сложным объяснениям там, где вполне годятся простые.

Допустим, кто-то увидел яркий и необычный свет в ночном небе — неопознанный летающий объект. Конечно, можно предположить, что это огни космического корабля, управляемого инопланетянами. Однако такое объяснение требует множества излишних, по Оккаму, «допущений» — что существуют инопланетяне, что они умеют управлять межпланетными кораблями, что они проявляют интерес к планете Земля, что они не могут пролететь незамеченными (несмотря на свои передовые технологии) и т. п. Но для огней на небе существует множество других, более простых объяснений: что это был самолет, или планета Венера (причина номер один «появления» всяческих НЛО), или пресловутые погодные зонды и т. п. Каждое из этих объяснений требует относительно небольшого количества допущений. И хотя никто не может доказать, что свет исходил не от инопланетного космического корабля, большинство из нас (сознательно или бессознательно) воспользуется бритвой Оккама и отвергнет это предположение.

Должен сказать, что, хотя ученые часто говорят о бритве Оккама и даже используют ее, когда речь идет о таких псевдонаучных вещах, как НЛО, я не припомню, чтобы к ней прибегали во время серьезных научных дискуссий. Причина, я думаю, в том, что ученые чувствуют себя неуютно, когда им приходится использовать философские аргументы, а имея под рукой надежные экспериментальные данные, незачем прибегать к общим соображениям. Иными словами, выбирая между теориями А и В, ученый будет полагаться на наблюдения и экспериментальные данные, а не на философские принципы вроде бритвы Оккама. В этом отношении бритва Оккама подобна критерию красоты — ученым удобно, что они существуют, они даже не сомневаются в их правильности, но редко используют их в работе.
1   2   3   4   5   6   7   8   9   ...   66

Похожие:

Законов мироздания iconМичио каку параллельные миры «сосриЯ» ^ 2 0 0 8 Об устройстве мироздания,...
...
Законов мироздания iconВиды предприятия Основные вопросы экономики
Экономическая категория и экономические законы. Отличия экономических законов от законов природы
Законов мироздания iconСовершенствование человека должно начинаться с осмысления мира, понимания...
А уровне поля, а потом на уровне тела. Сейчас этот процесс близок к критическому, потому что то, что сегодня является нашим духом,...
Законов мироздания iconИзучение основных законов фотометрии
Цель работы: знакомство с основными фотометрическими понятиями, величинами и экспериментальная проверка законов освещенности
Законов мироздания icon48 законов власти
Г85 48 законов власти и обольщения / Пер с англ. Е. Я. Мигуновой.— М.: Рипол классик, 2005.—736 с
Законов мироздания icon1. Во имя я есмь то что я есмь, от имени каждого жителя планеты Земля...
«Космос» в Мироздании, Вечности, Бесконечности, от имени каждого члена рода ариев и славян, от имени Создателя Всего Сущего, от имени...
Законов мироздания iconПрограмма
Я иду в Президенты России для восстановления в России законов народовластия – тех законов, которые вписаны народом России в действующую...
Законов мироздания iconМировое древо фундаментальный и универсальный символ упорядоченности...
Мировое древо – фундаментальный и универсальный символ упорядоченности мироздания и гармонии в противоположность состоянию Хаоса....
Законов мироздания iconПредмет, методы и функции политологии. Этапы развития политической науки
«вечных» истин и «неизменных» политических законов. По их мнению, часто сторонники поиска политических законов не учитывают главного —...
Законов мироздания iconВариант работы определяется, по последней цифре зачетной книжке
Государственную Думу Федерального Собрания РФ проекты федеральных конституционных законов, федеральных законов, предложения о поправках...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница