Особенности добычи газа и конденсата


НазваниеОсобенности добычи газа и конденсата
страница1/3
Дата публикации13.04.2013
Размер330 Kb.
ТипДокументы
userdocs.ru > География > Документы
  1   2   3
ГЛАВА 7

ОСОБЕННОСТИ ДОБЫЧИ ГАЗА

И КОНДЕНСАТА
7.1. Особенности конструкций газовых скважин

Особенности конструкции и оборудования газовых скважин по сравнению с нефтяными, в частности с фонтанными скважи­нами, обусловлены отличиями свойств газа и нефти.

Физические свойства газа - плотность и вязкость, их изме­нение в зависимости от явления и температуры существенно отличаются от плотности и вязкости нефти и воды. Во многих случаях плотность газа значительно меньше плотности нефти и воды, а коэффициент динамической вязкости газа в 50-100 раз меньше, чем у воды и нефти.

Различие плотностей газа и жидкостей вызывает необхо­димость спуска кондуктора в газовых скважинах на большую глубину чем в нефтяных для предотвращения взрыва газом горных пород, загрязнения водоносных горизонтов питьевой воды, выхода газа на дневную поверхность.

Скорость движения газа в стволе скважины в 5—25 раз больше, чем скорость движения нефти. Извлечение газа из недр на поверхность происходит пока только за счет использования пластовой энергии. Газ некоторых месторождений содержит агрессивные, коррозионные компоненты (сероводород, угле­кислый газ). Отсюда к прочности и герметичности газовой скважины предъявляют более жесткие требования.

Газовые и газоконденсатные месторождения залегают в зем­ной коре на различных глубинах: от 250 до 10000 м и более. Для извлечения углеводородных компонентов пластового флюида на поверхность бурятся газовые и газоконденсатные скважины. Газовые скважины используются для: 1) движения газа из пла­ста в поверхностные установки промысла; 2) защиты вскрытых горных пород разреза от обвалов; 3) разобщения газоносных, нефтеносных и водоносных пластов; 4) предотвращения под­земных потерь газа.

Давление газа на устье газовой скважины всего на 5—10% меньше забойного давления или пластового давления в оста­новленной скважине. При истощении залежи или при особых условиях (открытый газовый фонтан, перекрытие ствола скважинным клапаном-отсекателем) устьевое давление при­ближается к атмосферному давлению. Значит, на обсадные трубы создаются большие давления и их перепады при наличии температурных напряжений. В случае малейшей негерметично­сти обсадной колонны вследствие малой вязкости газ проникает в вышележащие пласты, что может привести к загазованности территорий, образованию грифонов и создать взрывоопасные условия. Агрессивные компоненты не должны вызывать сни­жение прочности обсадных колонн и газопромыслового обо­рудования. Вследствие больших скоростей газа повышается опасность эрозии оборудования в газовой струе. Поэтому подби­рают соответствующие материалы обсадных колонн, повышают герметичность труб применением уплотнительных смазок для резьб или сварных соединений, цементируют трубы по воз­можности на большую высоту (до устья) и др. Герметичность колонн обсадных труб достигается различными способами: применением резьбовых соединений на концах труб и муфтах со специальной трапецеидальной формой поперечного сечения с тефлоновыми уплотнительными кольцами, использованием фторопластовой уплотнительной ленты, герметизирующих уплотнительных составов для муфтовых соединений. Герме­тичность заколонного пространства скважин обеспечивается применением цементов определенных марок, дающих газоне­проницаемый, трещиностойкий цементный камень.

Газовые скважины эксплуатируются в течение длительного времени в сложных, резко изменяющихся условиях. Действи­тельно, давление газа в скважинах доходит до 100 МПа, темпе­ратура газа достигает 523 К. В процессе освоения, исследований, капитального ремонта и во время эксплуатации скважин резко изменяются давление, температура, состав газа, движущегося в скважине.

Скважины - дорогостоящие капитальные сооружения. В общих капитальных вложениях в добычу газа удельный вес капитальных вложений в строительство скважин может составлять 60—80% в зависимости от глубины залегания место­рождения, геологических условий бурения скважин, географи­ческих условий расположения месторождений. Долговечность работы и стоимость строительства скважин определяются их конструкциями.

Конструкцией скважины называют сочетание нескольких колонн обсадных труб различной длины и диаметра, спускае­мых концентрично одна внутри другой в скважину. Колонны обсадных труб скрепляются с породами геологического разреза цементным камнем, поднимаемым за трубами на определенную высоту.

Конструкция скважины должна обеспечивать: доведение скважины до проектной глубины; осуществление заданных способов вскрытия продуктивных горизонтов и методов их эксплуатации; предотвращение осложнений в процессе бурения и эксплуатации; ремонт скважины; выполнение исследователь­ских работ; минимум затрат на строительство скважины, как законченного объекта в целом.

Конструкция добывающих газовых скважин зависит от многих факторов, в частности от пластового давления и от­ношения его к гидростатическому, геологических условий бурения, геолого-физических параметров пласта, физических свойств пластового флюида, разности давлений между пласта­ми, технологических условий эксплуатации скважин, режима эксплуатации пласта, экономических соображений.

При движении газа в стволе с забоя на поверхность, осо­бенно в высокодебитных скважинах, происходят большие по­тери давления на гидравлическое сопротивление, которые при дебите 0,5 млн. м3/сут в 2—3 раза превышают депрессию. Эти потери давления могут уменьшать дебит газовой скважины. При увеличении диаметра скважины (эксплуатационной ко­лонны) уменьшается расход пластовой энергии, но возрастают капитальные вложения на строительство скважины и снижается надежность. В настоящее время экономически оправдано при­менение в высокодебитных газовых скважинах эксплуатацион­ных колонн диаметром 219—245 мм.
^ 7.2. Оборудование устья газовых скважин

Оборудование устья газовой скважины предназначено для соединения верхних концов обсадных колонн и фонтанных труб, герметизации межтрубного пространства и соединений между деталями оборудования, осуществления мероприятий по контролю и регулированию технологического режима экс­плуатации скважин. Оно состоит из трех частей: 1) колонной головки; 2) трубной головки; 3) фонтанной елки.

Колонная головка соединяет верхние концы кондуктора и эксплуатационной колонны, герметизирует межтрубное пространство, служит опорой трубной головки с фонтанной елкой.

Трубная головка служит для подвески фонтанных труб и герметизации межтрубного пространства между эксплуатаци­онной колонной и фонтанными трубами. На трубную головку непосредственно устанавливают фонтанную елку крестовикового ялитройникового типа.

Фонтанная ёлка монтируется выше верхнего фланца труб­ной головки. Она предназначена для: 1) освоения скважины; 2) закрытия скважины; 3) контроля и регулирования технологиче­ского режима работы скважины. Основной элемент фонтанной елки крестовикового типа - крестовина, а тройниковой елки -тройник. На ней монтируются штуцеры, термометры, установки для ввода ингибитора гидратообразования и коррозии, устьевой клапан-отсекатель.

Устьевой клапан-отсекатель предназначен для автомати­ческого перекрытия выходной линии от скважины (шлейфа) при аварийном повышении давления до него или понижении давления после него (в шлейфе).

Фонтанная елка крестовикового типа имеет небольшую высоту, удобна в обслуживании. Применяется в случае, если в потоке газа отсутствуют твердые взвеси, газообразные или жидкие коррозионные агенты, способные вызвать коррозию крестовины и тем самым вывести скважину из эксплуатации.

Фонтанная арматура (елка) тройникового типа имеет два тройника. Верхний-рабочий, нижний - резервный. Нижний ис­пользуется только во время ремонта или замены верхнего. Фонтанная арматура тройникового типа имеет большую высоту (до 5 м от поверхности), неудобна в обслуживании. Применяется в особо сложных условиях эксплуатации скважины - при на­личии твердых взвесей в потоке газа, вызывающих абразивный износ оборудования, газообразных или жидких коррозионных агентов (углекислый газ, сероводород, пропионовая, масляная или другие кислоты жирного ряда), при резких колебаниях давления и температуры.

Фонтанная арматура выпускается на рабочие давления 4; 7,5; 12,5; 20; 30; 35; 70 и 100 МПа. Внутренний диаметр фон­танной арматуры (63 или 100 мм) выбирают в зависимости от дебита скважины и давления газа. Увеличение дебита скважины приводит к увеличению диаметра эксплуатационной колонны, и следовательно, диаметра фонтанной арматуры.

Во время сборки фонтанной арматуры следует обращать внимание на тщательность крепления всех соединений и в осо­бенности соединений трубной головки, так как при ее ремонте или замене необходимы остановка и глушение скважины. Кроме того, неисправность арматуры может привести к открытому фонтанированию. Рабочее и статическое давление в скважи­не определяют по манометру, смонтированному на буфере, а давление в затрубном пространстве по манометру на одном из отводов крестовины трубной головки.

Для регулирования режима работы скважины на выкидных линиях после задвижек устанавливают штуцеры—насадки с от­носительно небольшим проходным сечением. Конструктивно штуцеры подразделяются на два типа—с нерегулируемым и регулируемым сечениями. Штуцеры первого типа просты по конструкции, в промысловых условиях их изготавливают из стального патрубка, которому придается форма усеченного ко­нуса. Такой штуцер можно быстро вставить в соответствующее гнездо, где он прочно закрепляется под действием односторон­него давления газа. Диаметр отверстия в штуцере может быть от 2,3 до 20 мм и более. Чем меньше отверстие, тем большее сопротивление создает штуцер на пути движения газа, тем выше будет буферное и забойное давление скважины и тем меньше, следовательно, ее дебит.

В связи с широким распространением групповой системы сбора газа местоположение штуцера и место ввода метанола с елки переносят на групповую установку. В этом случае облег­чаются наблюдение за состоянием штуцера и его замена.



Рис. 7.1. Комплекс устьевого оборудования для высокодебитных скважин:

1 - угловой регулирующий штуцер;

2 - автоматический отсекатель; 3 - стволовая пневматическая

задвижка; 4 - трубная головка
Предприятия ВПО «Союзнефтемаш» разработали комплекс устьевого оборудования для высокодебитных скважин газовых месторождений Тюмени (рис. 7.1). Он состоит из блочной фонтанной арматуры АФБ6-150/160 х 210ХЛ с дублирующей дистанционно управляемой стволовой задвижкой, автоматиче­скими отсекателями, угловыми регулирующими дросселями на боковых отводах елки; трубной головки, предусматривающей возможность подвески одного ряда насосно-компрессорных труб диаметром 168 мм; манифольда фонтанной арматуры, позволяющего отбирать продукцию по одному из двух или по обоим боковым отводам одновременно и менять штуцерные насадки без остановки скважины; колонной головки ОКК1-210 для обвязки обсадных колонн диаметрами 219 и 324 мм между собой и герметизации межтрубного пространства при помощи самоуплотняющегося уплотнителя. Диаметр условного прохода ствола 150 мм, боковых отводов трубной головки 65 мм, боковых отводов елки 100 мм, температура окружающей и рабочей среды до 213 и 393 °К соответственно, давление 21 МПа.
^ 7.3. Подземное оборудование газовых скважин

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите окружа­ющей среды. Условиям надежности, долговечности и безопас­ности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя. Подземное оборудование ствола скважины позволяет осуществлять: 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону пласта с целью интенси­фикации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважи­ны жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 7.2.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитель (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, урав­нительный клапан, переходник и замок; аварийный, срезной клапан; разъединитель колонны НКТ; хвостовик.

Разобщитель (пакер) предназначен для постоянного разъединения пласта и трубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздей­ствия высокого давления, высокой температуры и агрессивных компонентов (H2S, C02, кислот жирного ряда), входящих в состав пластового газа. Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газо­жидкостного потока и выработки газонасыщенного пласта снизу вверх. Фонтанные трубы изготавливают из высококачественной стали, цельнотянутыми длиной 5-7м с внутренним диаметром 33, 60, 63, 89 и 102мм. Ниппель служит для установки, фикси­рования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.


Рис.7.2. Схема подземного обо­рудования газовой скважины

1 - эксплуатационный пакер; 2 - цир­куляционный пакер; 3 - ниппель; 4 - забойный клапан-отсекатель с уравнительным клапаном; 5 -разобщитель колонны НКТ; 6 - ин­гибиторный клапан; 7 - аварийный срезной клапан; 8 - НКТ; 9 - жидкий ингибитор коррозии и гидратообразования; 10 – хвостовик
Циркуляционный клапан обеспечивает временное сообще­ние центрального канала с затрубным пространством с целью осуществления различных технологических операций: освоения и задавки скважины, промывки забоя, затрубного пространства и колонны НКТ, обработки скважины различными химически­ми агентами и т.д. Клапан устанавливается в колонне НКТ во время ее спуска в скважину и извлекается вместе с ней.

Ингибиторный клапан предназначен для временного со­общения затрубного пространства скважины с внутренним пространством колонны НКТ при подаче ингибитора коррозии или гидратообразования в колонну. Клапан устанавливается колонне НКТ во время ее спуска и извлекается вместе с ней.

Устройство для автоматического закрытия центрального канала скважины предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при ава­рийных ситуациях или ремонте оборудования устья. Оно может устанавливаться в различных местах в НКТ.

Аварийный срезной клапан предназначен для глушения (задавки) оборудованной пакером скважины в аварийной ситуации через затрубное пространство, когда нельзя открыть циркуля­ционный клапан. Устанавливается с колонной НКТ, входит в состав комплекта скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МПа.

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, при­меняемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от трубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструк­ции, минимально возможные основные размеры и металло­емкость; 6) устойчивость к агрессивным средам при высоких давлениях и температурах.

Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.
  1   2   3

Похожие:

Особенности добычи газа и конденсата iconКак перемещались основные центры добычи нефти и газа в СССР с 1940 по 1980 гг.?
Как изменилось соотношение добычи основных видов топлива в топливно-энергетическом балансе СССР с 1975 по 1990 гг.?
Особенности добычи газа и конденсата iconА. В. Галушкин организация добычи
Методические указания к выполнению курсовых работ по дисциплине «Технические средства и технологии добычи нерудных строительных материалов»...
Особенности добычи газа и конденсата iconЧто ты думаешь о проблеме "peak oil" (момент максимальной добычи...
...
Особенности добычи газа и конденсата iconЭкзаменационные вопросы по физике за II семестр 1 курса
Электрический ток в газах. Ионизация газа. Ионная и электронная проводимость газа
Особенности добычи газа и конденсата icon4 Область применения газлифтного способа добычи нефти Когда пластовой...
Один их механизированных способов эксплуа­тации скважин газлифтный способ. Фонтанирование можно искусственно продолжить путем подачи...
Особенности добычи газа и конденсата iconЛекция №3 Россия на рубеже XIX – XX вв. Особенности экономического развития России в начале XX в
«Продамета» («Продажа металла») сосредоточил в своих руках свы­ше 85 сбыта готового металла. На долю трех объединений не­фтяной промышленности...
Особенности добычи газа и конденсата icon1. 1 Предмет и метод механики жидкости и газа
Механика жидкости и газа – техническая прикладная наука, изучающая законы, которым подчиняется жидкость и газ в состоянии покоя,...
Особенности добычи газа и конденсата iconЛекция №1. Введение
Постепенное истощение запасов нефти и газа на суше и обострение мирового энергетического кризиса обусловило необходимость все более...
Особенности добычи газа и конденсата iconКонспект лекций по молекулярной физике и термодинамике для студентов...
Молекулярно – кинетическая теория. Уравнение состояния. Модель идеального газа. Основное уравнение состояния идеального газа. Основное...
Особенности добычи газа и конденсата icon1. Термодинамическая система. Внутренняя энергия системы. Внутренняя энергия идеального газа
Шого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Внутренняя энергия складывается в основном...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница