Лекция по биологической химии


НазваниеЛекция по биологической химии
страница14/15
Дата публикации16.03.2013
Размер1.65 Mb.
ТипЛекция
userdocs.ru > Химия > Лекция
1   ...   7   8   9   10   11   12   13   14   15

Δ μН+ = Δ Ψ – (-)ΔрН+

^ Электрохимический Мембранный Градиент рН

градиент рН потенциал

Градиент ΔрН+ имеет отрицательное значение, поскольку измерение проводится от внутренней поверхности мембраны, имеющей более отрицательную величину, к наружной. В целом Δ μН+ имеет положительное значение, равное +0,224v.

Внутренняя мембрана не может заряжаться сколь угодно долго. Если продолжить аналогию с конденсатором, то перезарядка приводит к «пробою», т.е. разрядке. Роль разряжающего устройства выполняет АТФ-синтаза – V комплекс дыхательной цепи.

Каким же образом генерирование протонного потенциала связано (сопряжено) с образованием АТФ?


  1. ^ Структура и функция протонной АТФ-азы. Механизм разобщения.

Свободная энергия электрохимического протонного градиента митохондриальной мембраны используется для синтеза АТФ с помощью протон-переносящей АТФ-синтазы (она также называется протонным насосом, АТФ-азой, F1Fo-АТФ-азой, V комплексом дыхательной цепи).

АТФ-синтаза является самым крупным, по форме напоминающим гриб, структурным компонентом внутренней митохондриальной мембраны. АТФ-синтаза представлена 2 большими полиферметными белками - F1 (шляпка гриба) и Fo (ножка), каждый из которых, в свою очередь, состоит из нескольких неоднородных полипептидов.



Рис. 5.6 . Модель грибовидного комплекса АТФ-синтазы. V комплекс.
^ – не растворимый в воде трансмембранный белок, главной частью которого является канал для транслокации протонов. Fo означает «фактор О» (от слова олигомицин - антибиотик, продуцируемый Streptomyces). Олигомицин ингибирует транспорт протонов через «ножку» Fо, реагируя с единственным остатком глутаминовй кислоты на одной из субъединиц. Блокада транспорта протонов приводит к потере способности АТФ-азы синтезировать АТФ.

F1 - водорастворимый периферический мембранный белок, состоящий из 5 субъединиц. Если отделить (например, мочевиной) F1 от Fо, то первый сможет только гидролизовать АТФ, но потеряет способность эту молекулу синтезировать.

Синтез АТФ катализирует β-субъединица белка F1. Этот синтез осуществляется спонтанно, т.е. без затраты энергии. Происходит это следующим образом (рис.5.7): F1 имеет 3 химически идентичных, но конформационно различно взаимодействующих αβ-протомеров: О (open) – с открытой конформацией, характеризующейся очень низкое сродство к лигандам и каталитически неактивной; L (loose) - легко связывающей лиганды и каталитически неактивной; T (tight) – жёстко связывающей лиганды и каталитически активной.



Рис. 5. 7. Работа «молекулярной турбины» – фактора F1.
В состав F1 входит γ-субъединица, способная вращаться подобно тому, как вращается турбина в воде («молекулярная турбина»). Вращение γ-субъдиницы обуславливает конформационные изменения в αβ-протомерах.

Связывание АДФ с неорганическим фосфатом происходит на участке ^ L. После этого происходит вращение γ-субъединицы на 120˚ (на рис. против часовой стрелки). Это вращение требует затраты энергии, которая аккумулируется при генерации электро-химического потенциала и подпитывается протонным переносом через канал Fo. При вращении γ-субъединицы происходят конформационные изменения αβ-протомеров, в результате чего L-участок преобразуется в T, а T - в O. В Т-участке осуществляется синтез АТФ, а из О-участка (вследствие вращения «турбины») высвобождается АТФ.

Таким образом, энергия электро-химического потенциала требуется не для синтеза АТФ, а для удаления её из активного центра V комплекса. Эта энергия расходуется также на транспорт АТФ из матрикса через митохондриальные мембраны в цитоплазму клетки, а АДФ – в обратном направлении (на работу фермента АТФ-транслоказы). Львиная доля энергии протонного потенциала расходуется на транспорт ионов кальция. Доставка субстратов тканевого дыхания также осуществляется за счёт этой энергии.

Измерение «силы протонного потенциала» показало, что 1 молекула АТФ может образоваться за счёт окисления НАДН∙Н+ первым комплексом дыхательной цепи, 1 молекула АТФ – за счёт окисления убихинола третьим комплексом и 1 молекула – при окислении цитохрома с четвёртым комплексом. Именно в этих местах падение редокс-потенциала превышает 0,2 v, при таком перепаде освобождается энергия, вполне достаточная для синтеза молекулы АТФ (для синтеза АТФ необходимо затратить 42 кДж/моль). Таким образом, при окислении НАД-зависимых субстратов может образоваться 3 молекулы АТФ, а при окислении ФАД-зависимых – 2 молекулы АТФ (транспорт электронов начинается со второго комплекса дыхательной цепи).

Следует заметить, что ещё в 30-х годах академик В.А. Энгельгардт обнаружил, что при тканевом дыхании на 1 молекулу кислорода расходуется 3 молекулы фосфата, т.е. отношение Р/О=3 (при использовании НАД-зависиымых субстратов тканевого дыхания). Если в среду инкубации митохондрий добавлялся сукцинат, коэффициент Р/О=2. Эти показатели были названы В.А. Белицером и Е.Т. Цыбаковой коэффициентами фосфорилирования, а I, III и IV комплексы дыхательной цепи – пунктами сопряжения (связи между процессами окисления и фосфорилирования).

Согласно подсчётам известного российского биохимика В.П. Скулачёва, в сутки у человека может синтезироваться более 30 кг (!) АТФ: поскольку в сутки у человека образуется 400 мл воды (22 моля), а коэффициент Р/О=3 (66 молей АТФ), то умножая на молекулярную массу АТФ (507), получаем

707 х 66 = 33 462 (т.е.>33 кг)

^ Транспорт электронов и протонов – сопряжённые процессы.

Транспорт электронов (окисление НАДН∙Н+ и ФАДН2 кислородом) и окислительное фосфорилирование (синтез АТФ) в норме тесно связаны Это называется сопряжением окисления и фосфорилирования. В состоянии покоя, когда окислительное фосфорилирование минимально, электрохимический градиент внутренней митохондриальной мембраны достигает величины, при которой прекращается дальнейший перенос протонов. Тем самым ингибируется транспорт электронов.

Однако обнаружены вещества, например, 2,4-динитрофенол (ДНФ), которые разобщают эти процессы (ДНФ получил печальную известность как препарат для снижения массы тела). Присутствие во внутренней митохондриальной мембране агентов (ионофоров), увеличивающих их проницаемость для Н+, разобщает окислительное фосфорилирование от процесса транспорта электронов, поскольку при этом нарушается генерирование электро-химического потенциала и, следовательно, синтез АТФ. ДНФ является липофильной слабой кислотой, поэтому легко проходит через мембрану (снаружи внутрь митохондрии), ослабляя естественный ток протонов, идущий в противоположном направлении.

Путь транспорта электронов, не связанный с синтезом АТФ, называется свободным, нефосфорилирующим, окислением. При свободном окислении энергия не аккумулируется, а высвобождается в виде тепла. Это имеет физиологическое значение при охлаждении организма.

Частичное разобщение окисления и фосфорилирования наблюдается при многих заболеваниях, так как митохондрии являются наиболее чувствительными клеточными органеллами к действию различных повреждающих факторов. Нарушение их структуры, приводящее к частичному или полному распаду внутренней митохондриальной мембраны, неизбежно будет способствовать обратному току протонов и нарушать энергопродукцию. Поэтому особое значение приобретает стабилизация митохондриальных мембран биоантиоксидантами (витаминами Е, А и аскорбатом) при любой патологии.

В ряде случаев некоторые пункты фосфорилирования могут «выключатся» - такое состояние называется разобщением окислительного фосфорилирования - и в этом случае P/O снижается: для НАД-зависимых субстратов - ниже 3; для ФАД-зависимых субстратов - ниже 2-ух.

И исходя из 1-го закона термодинамики в разобщенных митохондриях увеличивается теплообразование. (Это происходит за счет того, что та энергия электронов, которая должна была быть использована для синтеза АТФ в «выключенном» пункте фосфорилирования, рассеивается в виде тепла).

Процесс разобщения окислительного фосфорилирования лежит в основе лихорадки, вызванной бактериями, вирусами и другими агентами.

Разобщение резко усиливается при охлаждении организма.

Работа митохондрий при «выключенных» всех пунктах фосфорилирования называется сопряженной, в противном, выше описанном случае, разобщенной и дыхание при этом называется свободным.

В качестве разобщителей окислительного фосфорилирования выступают слабые гидрофобные кислоты (ЖК), тиреоидные гормоны, лекарства(дикумарин, динитрофенол).

ДЦ имеет механизмы шунтирования: сброс электронов и протонов по протяжению с НАД на цитохромы, или с НАД на межмембранные дегидрогеназы, на наружную мембрану и гладкую ЭПС (микросомальную цепь).

Такой перенос характерен для печени. При воздействии какого-либо блокатора, возникает блок в 1-ом комплексе ДЦ, происходит накопление НАД.Н2 и становится реальной угроза гипоксии, печень может погибнуть. Чтобы этого не произошло происходит сброс НАД.Н2 с митохондрий ДЦ на микросомальную ДЦ через цитохром b5.


  1. ^ ОФ (снятие pH и ). Механизмы термогенеза. Роль бурой жировой ткани.

Регуляция процесса окислительного фосфорилирования.

Экспериментальные исследования показали, что добавление в ячейку полярографа с инкубируемыми митохондриями АДФ резко стимулировало потребление митохондриями кислорода. Накопление АДФ – регуляторный сигнал, вызывающий стимуляцию тканевого дыхания, т.е. усиление окисления субстратов тканевого дыхания. Это имеет большое физиологическое значение, так как увеличение концентрации АДФ в клетке является свидетельством низкой концентрации АТФ (соотношение адениловых нуклеотидов в клетке постоянно), следовательно, указывает на энергетическое её голодание. Отсюда вытекает и необходимость большего потребления субстратов. Помимо регуляторной роли соотношения АДФ/АТФ, в контроле скорости фосфорилирования участвуют НАД-зависимые коферменты: высокое соотношение НАДН∙Н+/НАД+, так же как и увеличение соотношения АТФ/АДФ будет снижать интенсивность тканевого дыхания.

Способность генерации энергии присуща всем тканям но для того, чтобы они все зароботали, необходимо сильное охлаждение организма.

Поэтому в организме есть ткань, которая обеспечивает термогенез в обычных условиях. Это бурая жировая ткань (БЖТ). Ее особенно много у новорожденных (от затылка до крестца, вдоль всей спины). У взрослого она локализуется в в определенных местах: между лопаток, в паху. Ярко выраженной способностью к теплопродукции обладает бурая жировая ткань новорождённых (а её много в организме зимнеспящих животных), которая отличается от типичной жировой ткани тем, что содержит много триацилглицеролов. Кроме того, в митохондриях этой ткани так много цитохромов, что она приобретает бурый цвет. Митохондрии бурой жировой ткани содержат разобщающий белок термогенин (димер 32 кД), который действует подобно каналу, контролирующему проводимость протонов во внутренней митохондриальной мембране. Поток протонов через этот канал ингибируется физиологическими концентрациями пуриновых нуклеотидов (АДФ, АТФ, ГДФ и др), но это ингибирование может быть устранено свободными жирными кислотами. Компоненты этой системы подчиняются гормональному контролю, в частности, норадреналину, который через систему цАМФ активирует гормончувствительную липазу, расщепляющую триацилглицеролы бурого жира с освобождением свободных жирных кислот.

БЖТ имеет большое количество митохондрий, т. к. митохондрии содержат цитохромы, то это и придает этой ткани бурый цвет. Особенностью митохондрий БЖТ является отсутствие АТФ-азы, Н+ генерируется в обычном режиме, но нет инструмента (аденилаттранслаказы), трансформирующего Н+ ---> АТФ. Вместо нее есть белок термогенин, который шунтирует Н+ с наружной мембраны во внутрь и одновременно способствует рассеиванию энергии Н+ в виде тепла, так и происходит подогрев тканей. БЖТ охватывает крупные кровеносные сосуды и согревает кровь, а потом эта кровь согревает перефирические участки тела.

Это и есть несократительный термогенез.

Механизм сократительного термогенеза связан с окислительным фосфорилированием.

При охлаждении организма, активизируется симпатическая нервная система, в овет на это происходит выброс адреналина, под действием которого идет гликолиз, через аденилатциклазный механизм. Образующиеся при этом ЖК разобщают окислительное фосфорилирование и (согласно 1-му закону термодинамики) теплопродукция увеличивается. Именно поэтому, после принятия жирной пищи наступает состояние температурного комфорта.


  1. ^ Основополагающая роль энергетического обмена. Пути утилизации Н+ и АТФ. Прикладные аспекты биоэнергетики.

Энергетический обмен играет ведущую роль в жизнедеятельности организмов, т. к. все функции организма энергозависимы. Систему механизмов, обеспечивающих стабильный уровень субстратов энергообмена называют энергетическим гомеостазом.

Одним из механизмов поддержания постоянного уровня АТФ в клетке, является наличие мегамитохондрий, которое дает большое преимущество.

Если один участок клетки плохо снабжается кислородом, то при помощи мегамитохондрий энергия Н+ транспортируется в этот участок и восполняет недостаток АТФ.


  1. Пути потребления O2 в организме. Характеристика микросомальной ДЦ, ее сравнение с митохондриальной. Характеристика цитохромов P450, их функция.

Тканевое дыхание - один из процессов диссимиляции, по сути это и есть биологическое окисление в тканях и клетках организма. В организме существует 3 пути потребления и утилизации кислорода:

1 путь - 90-95% O2 идет на митохондриальное окисление.

2 путь - 5-10% идет на микросомальное окисление (в печени при поступлении больших количеств токсинов - 40%).

3 путь - перекисное окисление (2-5%).

Микросомальная дыхательная цепь.

Микросомы (микрочастицы) - это замкнутые мембранные пузырьки (везикулы), образуемые из гладкой ЭПС при гомогенизации клетки. Как таковых микросом не существует.

Микросомальное окисление - это окисление, протекающее на гладкой ЭПС нормальной неразрушенной клетки.

Наиболее интенсивно микросомальное окисление протекает в печени и надпочечниках, а также в местах контакта с внешней средой, в коже, почках, легких, селезенке.

ЭПС - 2-й слой мембран, ассоциированных с 3-мя основными классами ферментов:

1) оксидоредуктазы;

2) трансферазы;

3) гидролазы.

Главная функция этих ферментов - реакции детоксикации.

Микросомальное окисление осуществляется с помощью одноименной ДЦ, которая представляет собой систему переносчиков протонов и электронов с НАД или НАДФ на кислород.

Существует 2 варианта микросомальной ДЦ:

1) НАДФ ----> ФП ---> b5 ---> p450 ---> O2

2) НАД ----> ФП ----> b5-----

Цитохром b5 одной цепи может передавать свои электроны на цитохром b5 другой цепи, а также на цитохром p450.

Микросомальное окисление можно записать и так:
1   ...   7   8   9   10   11   12   13   14   15

Похожие:

Лекция по биологической химии icon«Биологическая химия»
Предмет биологической химии, ее значение для биологии, медицины, ветеринарии, сельскохозяйственного производства, ветеринарной биотехнологии...
Лекция по биологической химии iconЛекция по биологической химии
Понятия «ферменты»: особенностях ферментативного катализа. О строении и структуре ферментов
Лекция по биологической химии iconБиохимия лабораторный практикум
Разработана: докт мед наук, профессор Т. П. Бондарь кафедры Физико-химические основы медицины, лабораторной диагностики и фармакологии;...
Лекция по биологической химии iconУчебно-методическое пособие к практическим занятиям по биологической химии
Учебно-методическое пособие предназначено для студентов лечебного и медико-профиоактического факультетов медицинских вузов, выполняющих...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconЗанятие 1 Аминокислоты и белки
Предмет и задачи биологической и клинической химии. Понятие о биохимических реакциях
Лекция по биологической химии iconВопросы к экзамену по Биологической химии для студентов 2 курса медицинского...
Предмет, задачи, методы и место биохимии среди других медицинских и биологических дисциплин
Лекция по биологической химии iconМетодические указания по биоорганической химии для студентов к занятию...
Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D и L система стереохимической номенклатуры
Лекция по биологической химии iconТезисы доклада
Уважаемые коллеги! Приглашаем Вас принять участие в работе VIII международной научно-технической конференции «Актуальные вопросы...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница