Лекция по биологической химии


НазваниеЛекция по биологической химии
страница6/15
Дата публикации16.03.2013
Размер1.65 Mb.
ТипЛекция
userdocs.ru > Химия > Лекция
1   2   3   4   5   6   7   8   9   ...   15

^ Денатурирующие агенты. Денатурация – нарушение пространственной структуры фермента с последующей потерей активности фермента. Денатурация вызывается рядом факторов, включая высокую температуру, экстремальные значения рН и химические денатурирующие реактивы типа мочевины.

Аллостерические ферменты, подвергнутые умеренному воздействию одним из этих факторов денатурации часто вначале теряют свои аллостеричесие свойства (субстратную кооперативность) при сохранении способности катализировать реакции. Это хорошее доказательство того, что третичная структура играет ведущую роль не только для механизмов катализа, но для механизмов аллостерической регуляции.

^ Две модели объясняют механизмы аллостерии.

Предложены две основные модели, описывающие механизмы аллостерии: согласованный механизм аллостерических взаимодействий или симметричная модель, предложенная Жаком Моно, Джефри Уайменом и Жаном-Пьером Шанже в 1965 году , и последовательная модель, предложенная Даниелом Кошландом. В основном эти модели лишь крайние формы представлений о механизме работы аллостеричеких ферментов.. Главное различие между ними в том, что симметричная модель представляет мультимерный аллостерический фермент как объединение нескольких субъединиц, согласованно изменяющих свою конформацию, в то время как модель Кошланда учитывает сосуществование смешанных, или гибридных молекул, субъединицы которых могут находится в различных конформационных состояниях.

^ Симметричная модель. Симметричная модель аллостерии является простым и изящным объяснением положительной субстратной кооперативности и влияния аллостерических эффекторов. Она основана на идее, что аллостерический фермент состоит из ряда субъединиц, которые могут существовать в двух различных конформациях. Их обозначают как расслабленное или R-состояние, и напряженное или T-состояние.

Все субъединицы данной молекулы фермента должны иметь одну и ту же конформацию. Другими словами, молекула фермента должна состоять полностью из R субъединиц или T субъединиц, и не может содержать смесь этих форм. В растворе эти две формы находятся в равновесии. Поскольку смесей типов субъединиц в индивидуальном белке невозможны, в растворе возникает простое равновесие между белками, состоящими полностью из R и T субъединиц.

Для объяснения работы модели нужно сделать еще два предположения:

  • Во-первых в растворе и в отсутствии любых лигандов (субстрата или аллостерического эффектора) равновесие сдвинуто в сторону T-формы.

  • Во-вторых, конформация активных центров такова, что R-состояние имеет более высокое сродство к лиганду. Это не обязательно означает, что T форма неспособна к связыванию лиганда, просто у нее более низкое сродство.

Е
сли добавляется небольшое количество лиганда к этому раствору, более вероятно, что он свяжется с R белком, поскольку тот имеет более высокое сродство. Это приведет к образованию комплекса, в котором белок R со связанной молекулой лиганда, утратит способность переходить в Т форму, что сместит сложившееся равновесие вправо, увеличив число R белков с высоким сродством к лиганду и увеличив тем самым общее сродство к лиганду в системе. Результат - положительная кооперативность - связывание одной молекулы лиганда а увеличивает способность белка, связывать другие молекулы лигандов.

^ Аллостерические эффекторы. Влияние эффекторов на ферменты можно объяснить просто, добавив к сказанному выше, что у фермента есть два центра связывания лигандов. Роль одного лиганда будет выполнять субстрат, взаимодействующий с активным центром, а второй лиганд – эффектор, связывающийся со специальным аллостерическим центром. Субъединицы фермента также могут принимать или R или T конформации. Активатор хорошо связывается с ферментом, который находится в R-конформации, обладающей одновременно высоким сродством к субстрату. Связывание активатора смещает равновесие в сторону R конформации с высоким сродством к субстрату, что способствует повышению скорости реакции.(«носок» на сигмовидной кривой). Чем выше концентрация активатора, тем выше скорость реакции и тем более похожей на гиперболу становится график зависимости скорости реакции от концентрации субстрата (сглаживание «носка» на кривой), и при больших количествах активатора на графике возникает гипербола. Эффектор со свойствами ингибитора имеет более высокое сродство к T-конформации. Его присоединение смещает равновесие в противоположном направлении, к появлению в растворе ферментов с низким сродством к субстрату и уплощению и удлинению «носка» на графике .

Симметричная модель объясняет свойства аллостерических ферментов простым и изящным способом, однако свойства некоторых ферментов лучше объясняются последовательной моделью.

^ Последовательная модель. Симметричная модель была основана на условии, что одна молекула фермента содержит только один тип субъединиц - R или T. Последовательная гипотеза обращается к возможности существования смешанных ферментов , содержащих оба типа. Равновесие лишь достигается в растворе, в котором законченные R и T структуры просто представляют экстремальные значения:
^ В основе связывания субстрата - индуцированное взаимодействие.

Последовательная модель принимает, что субстрат оказывает более прямое влияние на форму фермента. В отсутствии субстрата фермент существовал бы более или менее полностью в T-форме, которая имеет очень низкое сродство к субстрату. Так как субстрат входит в активный центр, как обычно путем случайного столкновения, отдельные части молекулы белка фермента самостоятельно обхватывают субстрат, обеспечивая хорошее взаимодействие. Это известно как индуцированное взаимодействие. Процесс индуцированного взаимодействия способствует переходу субъединицы, с которой связался субстрат в R-конформацию.

^ Изменение конформации одной субъединицы индуцирует изменения структуры другой

Одна субъединица теперь была преобразована в R-форму, но другие - все еще в T-состоянии. Отметим, что эти субъединицы связаны друг с другом и взаимодействуют друг с другом. Если мы принимаем, что переход одной субъединицы из T состояния в R оказывает влияние на переход в состояние R других субъединиц, мы говорим о положительной кооперативности в действии субстрата, поскольку большее количество субъединиц, вероятно, перейдет в состояние с более высоким сродством к субстрату. Это изменение для других субъединиц может происходить до связывания субстрата или просто облегчать индуцированное взаимодействие при приближении молекулы субстрата.

^ Ингибиторы и активаторы. Влияние аллостерических эффекторов можно также легко объяснить. Активатор подобен в своем действию субстрату только уже при связывании с другим центром на субъеди­нице, в то время как ингибитор будет делать фермент более жестким, и затрудняет индуцированое взаимодействие при переходе от Т до R.

^ Отрицательная субстратная кооперативность. Отрицательная субстратная кооперативность встречается не часто, но это происходит у некоторых ферментов. Симметричная модель не может объяснить отрицательную субстратную кооперативность, так как на основе закона действующих масс трудно объяснить перемещение R T равновесия в сто­рону высокого сродства. Последовательная модель объясняет это совершенно легко. Нужно только принять, что взаимодействие между субъединицами - таково, что преобразование одной из них в R-форму вызванную индуцированным взаимодейст­вием делает это более трудным для других субъединиц.
^ Какая гипотеза является правильной?

Существование отрицательной кооперативности дает право предположить, что последо­вательная гипотеза более реальна. С другой стороны существование смесей Т и R субъе­диниц ведет к намного более сложному равновесию. Некоторые исследования, используя быстрые методы измерения скоро­сти реакции, предполагают, что функция некоторых ферментов лучше объясняется с по­зиций симметричной модели. В некоторой мере гипотеза симметрии может быть рас­смотрена как частный случай последовательной, в котором T/R комбинации могут существовать лишь на протяжении очень короткого времени.

^ Ингибиторы бывают разные: обратимые и необратимые

Вещества со свойствами ингибиторов ферментов можно грубо разделить на обратимые и необратимые. Обратимые ингибиторы связываются с ферментом, используя слабые связи, подобные тем, которые используются ферментом в связывании субстрата. Эти связи формируются быстро, но также быстро и легко разрушаются. Следствием такого связывания обратимого ингибитора является эффективное мгновенное действие, но после удаления ингибитора фермент сохраняет свою активность. Ингибитор находится в равновесии с ферментом, формируя комплекс ингибитора фермента:

С
тепень торможения зависит от количества фермента, связавшегося с ингибитором, т.е. от позиции равновесия.

Н
еобратимые ингибиторы известны также как инактиваторы фермента. Они связываются с ферментом, формируя прочные, обычно ковалентные связи:

Реакция практически необратима и фермент теряет свою активность. Учитывая, что ковалентные связи образуются медленнее, для проявления действия необратимого ингибитора требуется некоторое время для взаимодействия с ферментом. Следовательно, действие необратимого ингибитора обычно зависит от времени и степень торможения увеличивается со временем контакта его с ферментом.

Многие необратимые ингибиторы нашли применение в исследовании ферментов и медицине.

Среди примеров необратимо действующих ингибиторов можно назвать диизопропилфторфосфат (ДИПФФ). Это соединение вошло в историю энзимологии как соединение использовавшееся для исследования роли химических групп в в структуре активного центра. ДИПФФ ковалентно связывается с гидроксильной группой серина и если эта группа важна в катализе реакции, фермент терял свою активность. Эти исследования позволило выявить группу ферментов, в активном центре которых активную роль играет серин (сериновые протеазы)

Другое соединение иодацетамид, образует ковалентную связь с SH –группами цистеина и если эта аминокислота важна для активности фермента, такой фермент утрачивает активность.

Ацетилсалициловая кислота (известный всем аспирин) является необратимым ингибитором циклооксигеназы- фермента участвующего в синтезе простагландинов. Ингибитором синтеза протеогликанов стенки бактерий является пенилиллин, структура которого напоминает D-аланин, встраиваемый в структуру протеогликанов. Связываясь с активным центром фермента бактерии благодаря своей схожести с переходным состоянием промежуточного продукта в активном центре, пенициллин образует ковалентную связь и тормозит работу фермента.

^ Обратимые ингибиторы могут быть конкурентными и неконкурентными

Различия между этими типами обратимых ингибиторов касаются их взаимоотношений с субстратом. Если ингибитор конкурирует с субстратом за место связывания на ферменте и действие одного может быть отменено избытком другого, говорят о конкурентном торможении, в противном случае речь идет о неконкурентных ингибиторах.

^ Конкурентные ингибиторы не всегда структурно подобны субстрату.

Различают два механизма конкурентного торможения.
А.Конкурентное торможение путем связывания активного центра. Классический конкурентный ингибитор - вещество, которое имеет структурное сходство с субстратом фермента. Благодаря этому подобию ингибитор может связываться с активным центром вместо субстрата. Это своеобразная молекулярная ошибка. Однако, поскольку субстрат и ингибитор не идентичны полностью, фермент не способен катализировать превращение ингибитора в продукт. Ингибитор просто блокирует активный центр фермента. Если субстрат свяжется с активным центром раньше, чем ингибитор, ингибитор не может связаться с ферментом. Нельзя одновременно обоим связаться с активным центром. Такой способ конкурентного торможения получил название изостерического из-за схожести (изос) структур субстрата и ингибитора. Наиболее часто в клетке в роли классического конкурентного ингибитора выступает продукт данной реакции, что имеет глубокий практический смысл.

^ Б. Конкурентное торможение путем изменения конформации фермента. В отличие от классического варианта, ингибитор связывается не с активным центром, а со специальным центром, связывающим ингибитор, который расположен вдали от активного центра. Связывание ингибитора вызывает изменение пространственной структуры (изменение конформации) в области активного центра, которое не позволяет присоединиться субстрату. Предшествующее связывание субстрата к активному центру в свою очередь, вызывает изменения конформации центра связывания ингибитора, которое предотвращает связывание ингибитора. И субстрат и ингибитор не могут одновременно связаться с ферментом. В этом виде конкурентного торможения ингибитор может иметь любую химическую структуру, поскольку они связываются с различными участками фермента.

^ Конкурентные ингибиторы не влияют на Vmax, они понижают Км.

Реакции связывания и субстрата и конкурентного ингибитора протекают быстро и обратимы, так что они существуют в равновесии. Позиции этого равновесия будут зависеть от концентраций реагентов. Учитывая, что фермент участник обеих реакций их равновесные состояния взаимосвязаны. Это означает, что при высоких уровнях ингибитора фактически все молекулы фермента будут участвовать в образовании EI комплекса, и фермент будет почти полностью ингибирован. С другой стороны, при высоких концентрациях субстрата почти все молекулы фермента будут связаны в ES комплексе и ингибитор не сможет связаться с ферментом. Высокие концентрации субстрата снимают действие ингибитора. Субстрат и ингибитор конкурируют друг с другом.



График Лаинуивера-Берка в случае классического конкурентного ингибирования
Эффект на Km Км - индикатор сродства субстрата и фермента. В присутствии конкурентного ингибитора некоторые молекулы фермента будут существовать как свободные ферменты, другие как комплексы ингибитора фермента. Первые будут иметь нормальное сродство, а вторые полностью неспособны к связыванию субстрата. Км измеряет полное сродство фермента в реагирующей смеси, которое будет представлять среднее значение между нормой и нулевым значением этого сродства, и поэтому будет явно меньше нормального значения. Так что конкурентный ингибитор уменьшает сродство субстрата и фермента, или увеличивает Км.

Эффект на Vmax Vmax - скорость при высоких концентрациях субстрата. Поскольку в этих условиях, ингибитор вытесняется субстратом, он не тормозит фермент вообще и, следовательно, конкурентные ингибиторы не замедляют реакцию при высоких концентрациях субстрата, и не изменяют Vmax. Это можно хорошо видеть на графике Лайнуивера-Берка. Наклон графика равен Km/Vmax. Увеличение наклона в присутствии ингибитора указывает на снижение скорости реакции при низких уровнях субстрата.

Наиболее часто приводимый пример конкурентного ингибирования - это использование малоновой кислоты для торможение дегидрогеназы янтарной кислоты. Наиболее близким структурным аналогом сукцината является малоновая кислота.



Примеры конкурентных ингибиторов.
Малоновая кислота тормозит активность дегидрогеназы янтарной кислоты, занимая активный центр на ферменте. Учитывая обратимость реакции, избыток янтарной кислоты снимет действие малоновой кислоты.
1   2   3   4   5   6   7   8   9   ...   15

Похожие:

Лекция по биологической химии icon«Биологическая химия»
Предмет биологической химии, ее значение для биологии, медицины, ветеринарии, сельскохозяйственного производства, ветеринарной биотехнологии...
Лекция по биологической химии iconЛекция по биологической химии
Понятия «ферменты»: особенностях ферментативного катализа. О строении и структуре ферментов
Лекция по биологической химии iconБиохимия лабораторный практикум
Разработана: докт мед наук, профессор Т. П. Бондарь кафедры Физико-химические основы медицины, лабораторной диагностики и фармакологии;...
Лекция по биологической химии iconУчебно-методическое пособие к практическим занятиям по биологической химии
Учебно-методическое пособие предназначено для студентов лечебного и медико-профиоактического факультетов медицинских вузов, выполняющих...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconЗанятие 1 Аминокислоты и белки
Предмет и задачи биологической и клинической химии. Понятие о биохимических реакциях
Лекция по биологической химии iconВопросы к экзамену по Биологической химии для студентов 2 курса медицинского...
Предмет, задачи, методы и место биохимии среди других медицинских и биологических дисциплин
Лекция по биологической химии iconМетодические указания по биоорганической химии для студентов к занятию...
Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D и L система стереохимической номенклатуры
Лекция по биологической химии iconТезисы доклада
Уважаемые коллеги! Приглашаем Вас принять участие в работе VIII международной научно-технической конференции «Актуальные вопросы...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница