Лекция по биологической химии


НазваниеЛекция по биологической химии
страница8/15
Дата публикации16.03.2013
Размер1.65 Mb.
ТипЛекция
userdocs.ru > Химия > Лекция
1   ...   4   5   6   7   8   9   10   11   ...   15

^ Регуляция активности с помощью гормонов.

Гормональная регуляция осуществляется на генетическом уровне путем обратного фосфорилирования. Например под действием адреналина и глюкагона происходит активация процесса распада гликогена, в ходе этого процесса образуется небелковое соединение - цАМФ, цАМФ - внутриклеточный гормон (вторичный посредник) яв-ся аллостерическим регулятором большого числа протеинкиназ. цАМФ образуется из АТФ под действием аденилатциклазы:

Гормон, циркулирующий в крови, попадает в межклеточную жидкость и контактирует с поверхностью клетки, где расположены рецепторы (Rs и Ri), белки узнающие и связывающие гормон.

Гормональный сигнал поступает на АЦ через белки посредники (Gs и Gi), которые активируются в условиях присоединения ГТФ. Уровень, образовавшийся под действием АЦ, цАМФ определяется не только активностью АЦ, но и активностью фосфодиэстераз, которые циклизируют цАМФ до АМФ.

Кроме цАМФ, существуют цГМФ, цУМФ, цЦМФ. Наибольшее значение имеет цГМФ. Она образуется под действием гуанилатциклазы, расположенной как в наружной мембране, так и внутри клетки, цГМФ единственный фермент, который реагирует на концентрацию Н2О2 и активируется под действием продуктов перекисного окисления.

цГМФ оказывает эффекты противоположные цАМФ.

цАМФ находится в тесном контакте с ионами Ca2+: высокая концентрация цАМФ в возбудимых тканях приводит к высокой [Ca2+] и стимуляции клетки. И наоборот, резкое уменьшение [Ca2+] тормозит АЦ и снижает уровень цАМФ.


  1. ^ Изоферменты, их природа, биологическая роль, строение ЛДГ.

Изоферменты - это группа родственных ферментов, катализирующих одну и ту же реакцию. Они происходят из одного предшественника за счет дупликациии гена с последующей мутацией образуемых аллелей. Они отличаются между собой:

1) скорстью катализа;

2) направлением катализируемой реакции;

3) условиями протекания реакции;

4) чувствительностью к регуляторам, факторам среды. (Более или менее устойчивы к ингибиторам);

5) сродством к субстрату;

6) особенностями структуры молекулы, ее ИЭТ, Mr, размерами и зарядом.

Изоферменты имеют адаптивное значение, т. е. придают специфику метаболизма.

Изоферменты обеспечивают межорганную связь, например, в процессе мышечной деятельности.

В миокарде и печени существуют различные изоферменты ЛДГ, которые обеспечивают метаболизм лактата:

ЛДГ4,5

в печени: ПВК -----> лактат

ЛДГ1,2

в сердце: лактат ------> ПВК

ЛДГ - олигомерный фермент, состоящий из 4-х субъединиц 2 типов.

H (heart) и M (muscle).

Существует 5 изоферментных форм:

HHHH HHHM HHMM HMMM MMMM

H4 H3M H2M2 HM3 M4

ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

Поскольку H-протомеры несут более выраженный отрицательный заряд, то изофермент H4 (ЛДГ1) будет мигрировать при электрофорезе с наибольшей скоростью к аноду.

С наименьшей скоростью к аноду будет двигаться М4.

Остальные изоферменты занимают промежуточное положение.

Изоферменты ЛДГ локализованы в различных тканях:

ЛДГ1,2 ----> мозг, аэробные ткани (миокард).

ЛДГ3 ----> лейкозные клетки.

ЛДГ4,5 ----> анэробные ткани: мышечная, скелетная.

Изоферменты появляются на различных этапах онтогенеза и реализуют программу индивидуального развития.

Изоферментный профиль меняется в процессе развития.

При патологиях имеется существенный изоферментный сдвиг.


  1. ^ Изменение активности ферментов в онтогенезе.

Изменение активности в онтогенезе.

Онтогенез человека развивается по определенной генетической программе, которая записана на уровне ткани, всего организма в гипоталамусе.

1. Внутриутробный период.

Характеризуется высокой активностью ферментов синтеза белка, липидов, происходит увеличение массы организма. Плод находится в анаэробных условиях и для метаболизма характерно анаэробная направленность.

Основной источник энергии - жирные кислоты, поступающие из организма матери; ЖК также выполняют строительную функцию (фосфолипиды мембран).

Глюкоза утилизируется анаэробным путем (анаэробный гликолиз), т. к. ткани плода не способны к ГНГ, и идет на развитие ЦНС.

2. Пренатальный период.

Характеризуется изменением активности ферментов, происходит подготовка организма к пребыванию в аэробной среде. Изменяется спектр гемоглобина, уменьшается его сродство к кислороду, изменяется активность митохондриальных ферментов.

3. Грудной

Потребность в глюкозе резко возрастает, она начинает утилизироваться аэробно, но примерно до двух лет основным источником энергии является все же липиды, причиной чего является соматотропин. (Гормон роста).

4. Ранний дошкольный период.

С 3-х до 5-и лет. В этот период клетки начинают питаться углеводами. Происходит стабилизация обмена и интенсивная миелизация нервных волокон.

5. Школьный и пубертантный период.

Обмен веществ модулируется под действием половых гормонов.

6. Зрелый.

Происходит стабилизация массы тела, репродуктивного гомеостаза. После 35-40 лет основным источником энергии являются опять липиды, что связано с ослаблением чувствительности тканей к Гл и изменение гормонального фона: гиперстресс (увеличивается уровень гормонов) заставляет клетку работать на пределе, т. е. использовать в качестве энергии жиры.


Заведующий кафедрой биологической химии, д.м.н., проф.

Грицук А. И.

___________

21.10.2006



Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры (МК или ЦУНМС)

Протокол № _________________200__года

ЛЕКЦИЯ
по биологической химии

наименование дисциплины

для студентов _2__ курса лечебного факультета

Тема Ферменты 4. Номенклатура и классификация.
Время 90 мин.
Учебные и воспитательные цели:

Дать представление:

  1. О локализации ферментов в клетке, органоспецифических и маркерных ферментах.

  2. О качественном обнаружении и количественном определении активности. О единицах активности (МE, катал), удельной активности, числе оборотов ферментов.

  3. О сопряженных ферментных системах и их применении. О номенклатуре, классификации ферментов (тривиальной, рациональной, систематической). О принципах классификации.

ЛИТЕРАТУРА

  1. Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М.: Медицина, 1990. С. 126–132; 1998. С. 157–168.

  2. Николаев А. Я. Биологическая химия. М.: Высшая школа, 1989. С. 52–92.

Дополнительная

  1. Марри Р. и др. Биохимия человека. М.: Мир, 1993. Т. 1. С. 63–75.

  2. Филиппович Ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 105–144.

  3. Врожденные и приобретенные энзимопатии / Под ред. Ташева Т. М.: Медицина, 1980.

  4. Вилкинсон Д. Принципы и методы диагностической энзимологии. М.: Медицина, 1981.

  5. Руководство по клинической лабораторной диагностике. Киев: Вища школа, 1990. С. 167–186.

  6. Зилва Ф., Пеннел Дж. Клиническая химия в диагностике и лечении. М.: Медицина, 1986. С. 372–388.


^ МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.
РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

№ п/п

Перечень учебных вопросов

Количество выделяемого времени в минутах



Локализация ферментов в клетке, органоспецифические и маркерные ферменты.

30



Качественное обнаружение и количественное определение активности. Единицы активности (МE, катал). Удельная активность. Число оборотов ферментов.

30



Сопряженные ферментные системы их применение. Номенклатура, классификация ферментов (тривиальная, рациональная, систематическая). Принципы классификации.

30

Всего 90 мин


  1. ^ Локализация ферментов в клетке, органоспецифические и маркерные ферменты.

Все ферменты и метаболические процессы компартментализованы (разделены и изолированы).

В нормальной клетке находится более 1000 ферментов.

Упорядоченное взаимодействие ферментов достигается путем многоуровневой регуляции и компартментализации.

Зная локализацию ферментов в клетке и определяя их активность в крови, можно судить о степени деструкции ткани.

Ядро: локализованы РНК-полимеразы, НАД-синтетаза, ферменты, участвующие в репликации ДНК.

Митохондрии: ферменты тканевого дыхания, окислительного фосфорилирования, ферменты b-окисления ЖК, цикла Кребса, пируватдегидрогеназного комплекса, синтеза мочевины.

Лизосомы: гидролитические ферменты с оптимумом рН в области 5 (пептидазы, эстеразы, нуклеазы).

Рибосомы: ферменты белкового синтеза.

ЭПС: ферменты синтеза липидов, ферменты гидроксилирования, детоксикации (метилирования, ацетилирования), конъюгации.

Мембраны: Na-K-АТФаза, аденилатциклаза, ферменты транспорта субстратов.

Цитоплазма: ферменты гликолиза, ПЦ, активации а/к, ферменты синтеза жирных кислот, ГНГ.

Мультиферментные системы локализуются в структуре органелл таким образом, что каждый фермент располагается в непосредственной близости от следующего фермента данной последовательной реакции.

Благодаря также компартментализации в клетке могут одновременно протекать 2 несовместимых процесса, например: b-окисление ЖК (в митохондриях) и синтез ЖК (в цитоплазме).

Органоспецифические ферменты:

Под органоспецифичностью понимают наличие метаболических путей, присущих только данному органу.

Так вот органоспецифические ферменты - это ферменты, катализирующие определенные метаболические пути, присущие определенному органу.

Хотя органы и имеют различное выражение того или иного метаболического пути, они имеют важное значение для диагностики многих заболеваний, путем определения их активности:

так для печени характерна высокая активность АсАТ, АлАТ, сорбитдегидрогеназы, ГДГ. Причем активность АлАТ выше, чем АсАТ, т. к. АсАТ лучше спрятана во внутриклеточных структурах.

Костная ткань - щелочная фосфатаза.

Простата - кислая фосфатаза.

Glandula parotis et pancreas - амилаза.

Миокард - ЛДГ1 и ЛДГ2 , креатинкиназа (ММ и MB-изоферменты).

Мышцы - ЛДГ4,5; ММ.

При нарушении целостности тканей этих органов, ферменты выделяются в сыворотку крови, где их активность резко повышается. В зависимости от того, активность какого фермента повысилась можно судить не только локализации каталитического процесса, но и о степени его тяжести.

Но для более конкретной и точной диагностики заболеваний, для определения интенсивности и глубины повреждения тканей нужны маркерные ферменты. Это ферменты, принадлежащие определенной конкретной органелле:

сукцинатдегидрогеназа - внутренняя мембрана митохондрий;

кислые гидролазы - лизосомы;

ферменты гликолиза - цитоплазма и т. д.


  1. ^ Качественное обнаружение и количественное определение активности. Единицы активности (МE, катал). Удельная активность. Число оборотов ферментов.

О скорости ферментативной реакции судят или по скорости убыли субстрата, или по скорости образования продукта.

За единицу активности любого фермента (Е) принимается то количество фермента которое в оптимальных условиях катализирует превращение 1 мкмоля субстрата в 1 мин.

Существует другая единица активности:

1 катал - количество фермента, который катализирует превращения 1 моля субстрата в 1 секунду.

1 Е фермента = 16,67 нкатал.

Для выражения активности фермента пользуются определением удельной и молекулярной активности.

Удельная активность - число Е ферментативной активности в расчете на 1 мг белка.

Чем выше очистка фермента, тем выше удельная активность.

Число оборотов фермента (молекулярная активность) - число молекул S,подвергающихся превращению одной молекулой фермента в 1 минуту. (Или число элементарных актов катализа, осуществляемой 1 молекулой фермента за 1 минуту).

Число оборотов широко варьирует, например:

1. Карбоангидраза (катализирует перенос Н2СО3) совершает 36 000 000 оборотов.

2. Каталаза - 4000 оборотов.

3. Фосфоглюкомутаза - 1240 об/мин.

Для качественного обнаружения и количественного определения активности сложных ферментов используют следующие методы: ЛДГ CH3 CH3

лактат -------- ПВК CH-ОН ------- С=О

НАД НАД.Н+Н COOH COOH

НАД.Н интенсивно поглощает свет ( =340 нм). По изменению ПВК можно судить о НАДН.

На одну молекулу лактата образуется одна молекула НАД.Н.

НАД.Н интенсивно флюоресцирует. Интенсивность флюоресценции будет пропорциональна концентрации.

В общем виде под активностью понимают количество фермента или биологического материла, содержащего фермент, которое при определенных условиях катализирует в единицу времени превращение определенного количества реагента, называемого субстратом. Активность - это изменение количества субстрата под влиянием фермента в единицу времени. Под изменением субстрата понимают снижающееся в единицу времени количество субстрата или же увеличивающееся количество продукта. Понятие "активность фермента" по сути дела идентична понятию "скорость ферментативной" реакции. Ферментативная активность выражается в единицах активности. В связи с существованием различных систем единиц исчисления введена интернациональная (стандартная) единица активности. Она носит символ "U" (unit-единица) и определяется как 1 мкмоль субстрата/мин. В системе СИ в качестве единицы ферментативной активности используют "катал" (kat). Катал определяется как 1 моль/сек.

1kat = 1 моль/сек.

Размерность её слишком велика, на практике пользуются меньшими кратными значениями, начиная с нанокатала (нкат). Это одна миллиардная катала или 10-9 кат. В сравнении с международной единицей следующее уравнение

1 U = 16,67 нкат

В практике лабораторий широко пользуются понятием удельная активность. Для этого число cтандартных единиц пересчитывают на какую-либо единицу сравнения. Это может быть мг белка в пробе или объем исследуемой биологической жидкости. Определение активности ферментов широко распространено в любой современной клинической лаборатории.

При исследовании кинетики реакций используется и такое понятие как молекулярная активность. Она показывает, сколько молекул субстрата в секунду превращаются в продукт 1 молекулой фермента и используется для сравнительной характеристики активности нескольких ферментов.
1   ...   4   5   6   7   8   9   10   11   ...   15

Похожие:

Лекция по биологической химии icon«Биологическая химия»
Предмет биологической химии, ее значение для биологии, медицины, ветеринарии, сельскохозяйственного производства, ветеринарной биотехнологии...
Лекция по биологической химии iconЛекция по биологической химии
Понятия «ферменты»: особенностях ферментативного катализа. О строении и структуре ферментов
Лекция по биологической химии iconБиохимия лабораторный практикум
Разработана: докт мед наук, профессор Т. П. Бондарь кафедры Физико-химические основы медицины, лабораторной диагностики и фармакологии;...
Лекция по биологической химии iconУчебно-методическое пособие к практическим занятиям по биологической химии
Учебно-методическое пособие предназначено для студентов лечебного и медико-профиоактического факультетов медицинских вузов, выполняющих...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconМетодические указания для самостоятельной подготовки студентов медицинских...
Методические указания для самостоятельной подготовки сту-дентов медицинских факультетов к практическим занятиям по биологической...
Лекция по биологической химии iconЗанятие 1 Аминокислоты и белки
Предмет и задачи биологической и клинической химии. Понятие о биохимических реакциях
Лекция по биологической химии iconВопросы к экзамену по Биологической химии для студентов 2 курса медицинского...
Предмет, задачи, методы и место биохимии среди других медицинских и биологических дисциплин
Лекция по биологической химии iconМетодические указания по биоорганической химии для студентов к занятию...
Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D и L система стереохимической номенклатуры
Лекция по биологической химии iconТезисы доклада
Уважаемые коллеги! Приглашаем Вас принять участие в работе VIII международной научно-технической конференции «Актуальные вопросы...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница