Применение полупроводниковых индикаторов


НазваниеПрименение полупроводниковых индикаторов
страница16/30
Дата публикации12.04.2013
Размер3.41 Mb.
ТипДокументы
userdocs.ru > Информатика > Документы
1   ...   12   13   14   15   16   17   18   19   ...   30
^

Рис. 4.4. Структурные рисунки знаков для 35-элементных буквенно-цифровых индикаторов



Исследования показали также, что общая час та ошибок (ошибок и пропусков) при считывании информации с индикато­ров зеленого цвета свечения при высоких уровнях внешней ос­вещенности была почти в три раза больше, чем с индикаторов красного цвета свечения, а число ошибок, получаемое за счет про­пусков, у индикаторов с зеленым цветом свечения было 35%, с красным 19%. Результаты этих испытаний меняют широко уко­ренившееся мнение, что считывать информацию с индикатора зеленого цвета легче, чем с красного, так как зеленое свечение почти приближается к пиковому состоянию чувствительности глаза. Объяснением этому может служить контраст изображения, воспринимаемого в определенном цветовом канале, независимо от общего восприятия контраста. Поскольку в эксперименте яркость индикаторов различных цветов была равной, а освещен­ность фона имеет максимальную световую яркость желто-зеленого свечения, контраст изображения индикатора с красным свечением, принимая во внимание только излучение красного цвета, будет выше, чем у индикаторов зеленого цвета свечения, если учитывать только излучение зеленого цвета.

Указанные данные требуют внимательного рассмотрения при выборе элементной базы для индикации информации в зависимо­сти от условий их использования.

Другим аспектом, на который необходимо обратить внимание при организации процесса отображения информации и ее считы­вания, является взаимное размещение оператора и устройства отображения информации. Вопрос выбора расстояния наблюде­ния рассмотрен в разделах, посвященных управлению цифровы­ми и буквенно-цифровыми индикаторами (в п. 1.2.1 ив введении к гл. 3).

^ 4.3. СПОСОБЫ УПРАВЛЕНИЯ БУКВЕННО-ЦИФРОВЫМИ ИНДИКАТОРАМИ
Матричность структуры выпускаемых буквенно-цифровых ин­дикаторов позволяет осуществить вывод на индикацию знака толь­ко в режиме стробирования, при этом каждый символ должен быть образован из пяти или семи поднаборов в зависимости от способа адресации. Сама структура матрицы тп предполагает два способа адресации: стробирование по строкам и по столбцам.



Рис. 4.5. Способы стробирования: а по строкам; б по столбцам
На рис. 4.5, а, б представлена поэтапность формирования буквы Б способами стробирования по строкам и столбцам соот­ветственно. При стробировании по строкам информации на воз­буждение подается по линиям столбцов при подаче разрешаю­щего строба на соответствующую строку. Этот процесс повто­ряется для каждой строки. Таким образом, информация о сим­воле должна быть разложена на семь пятиразрядных кодовых слова и до подачи на выводы столбцов храниться в накопителях. Информация должна подаваться на столбцы индикатора парал­лельными пятиразрядными кодами. Стробирование строк произ­водится последовательно.

Для рассмотрения циклов формирования знаков на 35-элементной матрице примем для обоих способов стробирования, что аноды светоизлучающих диодов объединены по столбцам, а ка­тоды — по строкам, т. е. для свечения СИД необходимо высокий логический уровень напряжения подавать на вывод столбцов, низкий логический уровень — на выводы строк.

Процесс формирования символа Б способом стробирования по строкам (рис. 4.5, а) протекает следующим образом. Информа­ция U1 о необходимости свечения всех СИД первой строки (высо­кий логический уровень напряжения) подается на входы всех столбцов одновременно с сигналом стробирования Uc1 (низкого логического уровня) на вход первой строки. При этом высвечи­ваются все СИД первой строки. По истечении времени экспо­нирования сигналы U1 и Uc1 снимаются. На входы столбцов подаются сигналы для высвечивания СИД второй строки (в дан­ном случае высокий логический уровень подается на вход первого столбца, на входы остальных — низкий логический уровень). При этом подается на вход второй строки стробирующий сигнал (низкого логического уровня) Uc2. Высвечивается только первый СИД второй строки. Высвечивание СИД остальных строк про­текает аналогичным способом. Высвечивание каждой строки с ча­стотой не менее 100 Гц обеспечивает свечение символа Б без мельканий.

При стробировании по столбцам информация на возбуждение СИД подается по линиям строк при подаче разрешающего строба на соответствующий столбец. Этот процесс повторяется для каж­дого столбца, т. е. информация должна быть разложена на пять семиразрядных кодовых слова и до подачи на выходы индикатора храниться в накопителях. Информация должна подаваться на строки индикатора параллельными семиразрядными кодами. Стробирование столбцов производится последовательно.

На рис. 4.5, б представлен процесс формирования знака Б способом стробирования по столбцам. Формирование происхо­дит следующим образом. На вход всех строк одновременно по­дается информация Ui-7 о необходимости свечения СИД (в слу­чае индикации знака Б подаются на все строки низкие логические уровни напряжений — сектор, отмеченный символом 1 на эпюре напряжений). Одновременно на вход первого столбца подается сигнал стробирования Uс1 (сигнал высокого логического уровня), обеспечивая свечение всех семи СИД первого столбца. По исте­чении времени экспонирования информационные сигналы и сиг­налы стробирования снимаются. Во втором цикле работы на вход всех строк подается информация о высвечивании СИД (в случае символа Б — на вход первой, четвертой и седьмой строк подаются сигналы низкого логического уровня — сектор, обозначенный сим­волом II на эпюре напряжений), на остальные входы — высокий логический уровень. На вход второго столбца подается строби­рующий сигнал UC2, высвечивая СИД первой, четвертой и седь­мой строк. Высвечивание остальных элементов происходит ана­логично. При частоте возобновления информации на каждой из строк не ниже 100 Гц изображение символа Б индицируется без мельканий. При длительной работе оператора с дисплеем, работающим в мультиплексном режиме, мелькание раздражает и вызывает утомление глаза. Мелькание обусловлено способно­стью глаза ниже некоторой частоты изменения яркости улавли­вать эти изменения. Выше этой частоты мелькание не наблюдает­ся. При нормальной освещенности частота мелькания, незаметная оператору, меньше 40 Гц. При высоких уровнях яркости эта частота может быть выше. Это объясняется способностью палоч­кового зрения реагировать на низкий уровень яркости и иметь более низкую критическую частоту мелькания (КЧМ) по срав­нению с колбочковым зрением. При некоторых уровнях освещен­ности КЧМ не зависит от цвета свечения. При эксплуатации индикатора в устройствах, подверженных вибрации, возникает яв­ление «смазывания» информации. Во избежание этого необходимо, чтобы частота возобновления информации превышала частоту вибрации в 5 раз.

Режим стробирования обеспечивает подключение каждого на время, обратно пропорциональное количеству стробируемых ли­неек диодов, при этом соответственно падает яркость свечения ин­дикатора. Для сохранения яркости свечения СИД импульсный ток через каждый из них необходимо увеличить в число раз, соот­ветствующее количеству стробируемых линеек.
^ 4.4. УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ НА ОСНОВЕ БУКВЕННО-ЦИФРОВЫХ ИНДИКАТОРОВ, УПРАВЛЯЕМЫХ СТРОБИРОВАНИЕМ ПО СТОЛБЦАМ
Способ етробирования по столбцам более прост в аппаратур­ном исполнении, чем способ стробирования по строкам, однако он имеет ограничение в количестве обслуживаемых одним дешиф­ратором индикаторов. На рис. 4.6 представлена структурная схема устройства управления и индикации на БЦИ типа ЗЛС340А, основанная на стробировании по столбцам. В данной схеме для простоты восприятия источником информации является клавиа­тура. В действительности же в большинстве случаев использова­ния индикаторных приборов источником информации являются в первую очередь системы — датчики информации (например, доплеровские измерители скорости, системы измерения темпера­турных режимов, измерители высоты и т. д.) или вычислительная машина, а уже во вторую очередь — клавиатура пульта управ­ления, используемая в качестве устройства ввода информации в аппаратурный комплекс для корректировки его работы.

В схеме наличие БЦИ условно показано пересечением шин столбцов и строк: предполагается, что в местах их пересечений установлены светоизлучающие диоды, например, соединенные ано­дами в столбцы, а катодами — в строки.

Схема функционирует следующим образом. Информация с кла­виатуры, представляющей собой наборное поле цифр, букв и зна­ков, через шифратор поступает в регистры памяти символов 1, 2, ..., N. Шифратор выполняет функцию преобразователя битовых сигналов с клавиатуры в шести- или семиразрядные коды симво­лов. Код символа поступает по сигналам счетчика выборки индика­тора последовательно на регистр памяти символа 1, по его запол­нении — в регистр памяти символа 2, затем в третий и т. д. По заполнении yV-ro регистра счетчик выборки индикатора пере­ключает выход шифратора снова на вход первого регистра памяти символа 1 и повторяет последовательность операций по вводу информации.

Счетчик управления перезаписи поочередно подает разреша­ющий сигнал на перезапись информации из регистров 1 — N в буферный регистр. Частота следования импульсов выходного сигнала счетчика управления выборкой столбцов в пять раз выше частоты счетчика перезаписи, что позволяет дешифратору выборки столбцов, входящему в состав генератора символов, пять раз выбирать последовательно столбцы индицируемого символа при неизменном коде символа в буферном регистре. После того как последний (пятый) столбец индицируемого симво­ла будет проиндицирован, счетчик управления перезаписи под­ключит на вход буферного регистра выход второго регистра памяти символа. После индикации второго знакоместа подключа­ются ко входам буферного регистра выходы следующего pernci ра памяти символа и т. д. Счетчик етробирования столбцов имеет модуль счета, равный K = 5N, где 5 — количество столбцов в ин­дикаторе; N — число знакомест в индикаторе. Счетчик етробиро­вания столбцов успевает последовательно опросить все столбцы всех индикаторов за один цикл опроса. При трех знакоместах в приборе отображения информации модуль счета этого счетчика будет равен 15.

Способ етробирования по столбцам применяется в устройст­вах отображения информации на одно или несколько знакомест. Количество знакомест зависит от среднего тока через светодиод и от максимально допустимого импульсного тока, т. е. от типа индикатора. Так, для индикаторов типа ЗЛС340А со средним током через светодиод 10 мА и максимальным импульсным током 300 мА максимальное число стробируемых столбцов 30 (или 6 знакомест).

Дальнейшее увеличение количества знакомест влечет за собой рост скважности возбуждающих импульсов и (для сохранения яркости свечения) импульсного тока, протекающего через СИД. При этом импульсный ток может превысить максимально допустимое значение или значение, за которым начинается снижение кванто­вого выхода полупроводникового материала. Для обеспечения светимости индикаторов без миганий на объектах, не подвержен­ных вибрациям, частота возобновления информации каждого столбца должна быть не менее 100 Гц.

Структурная схема может быть несколько изменена для при­менения в каждом частном случае. Так, структурная схема управления БЦИ способом стробирования по столбцам „ (см. рис. 4.6) при использовании ИПВ70А-4/5Х7К может быть реали­зована по схеме, приведенной на рис. 4.7.

Отличие в работе приведенной схемы от предыдущей заклю­чается в необходимости ввода информации для индикации в последовательном коде. В зависимости от допустимой тактовой частоты кода определяется максимально допустимое количество знакомест в устройстве отображения информации.

Допустимая тактовая частота кода определяется частотными характеристиками выбранных микросхем, использованных для обработки информации.



Рис. 4.6. Структурная схема устройства управления и индикации на основе буквенно-цифровых индикаторов (способ етробирования по столбцам)
В устройстве, структурная схема которого приведена на рис. 4.7, формирование кодов символов и запись их в регистры памяти аналогичны описанным выше. Далее коды символов из первого регистра памяти по сигналу из счетчика управления перезаписи подаются на вход генератора символов. Одновремен­но счетчик выборки столбцов формирует код первого столбца, по которому из генератора символов на преобразователь подается параллельный семиразрядный код первого столбца последнего (N-гo) в линейке индикаторов символа. Преобразователь, полу­чая информацию в параллельном коде, преобразует ее в последо­вательный код и по сигналам синхронизации, подаваемым на все индикаторы одновременно, вводит его в сдвиговый регистр перво­го ИПВ70А-4/5Х7К.

Если в устройстве отображения информации несколько че­тырехразрядных (четырехсимвольных) индикаторов, то выход первого ИПВ70А-4/5Х7К соединяется со входом второго, его выход — со входом третьего и т. д. Затем счетчик управления перезаписи подключит ко входу генератора символов код симво­ла со второго регистра памяти при неизменном состоянии счетчи­ка выборки столбца. При этом с выхода генератора символов код первого столбца (N — 1)-го символа через преобразователь запишется в сдвиговый регистр, проталкивая по регистру с частотой сигналов синхроимпульсов код первого столбца преды­дущего символа и т. д. до заполнения СР кодами первых столб­цов соответствующих символов. Указанная запись кодов происходит при наличии высокого логического уровня на входах гаше­ния индикаторов. При подаче на вход гашения низкого логиче­ского уровня напряжения включаются усилители-формирователи токов. Одновременно дешифратор столбцов по сигналу т задерж­ки и коду номера столбца через усилители тока столбцов под­ключит все первые столбцы индикаторов к источнику тока на время экспозиции. В данном случае время экспозиции — это время включенного состояния индикаторов.



Рис. 4.7. Структурная схема устройства отображения информации с исполь­зованием в качестве индикатора приборов ИПВ70А-4/5Х7К
Далее происходит выборка и представление данных для вто­рого столбца и т. д., пока все пять столбцов символов не будут представлены на всех индикаторах. Затем процесс воспроизведе­ния символов на индикаторах будет повторяться с частотой, определенной генератором тактовых импульсов.

^ Обеспечение тепловых режимов работы индикаторов ИПВ70А-4/5Х7К. При разработке устройств отображения ин­формации с применением индикаторов типа ИПВ70А-4/5Х7К необходимо обратить внимание на обеспечение тепловых режи­мов его работы, так как при площади поверхности индикатора примерно в 6,7 см2 и относительно малом количестве выводов (12) выделяемая им мощность составляет 1,2 Вт. Примерно 60% потребляемой индикатором мощности расходуется на обес­печение работы встроенных микросхем управления, причем в большей степени объем потребляемой мощности и соотношение мощностей, расходуемых на микросхемы и СИД, зависят от среднего количества включенных и не включенных СИД и от соотношения времени записи и индикации информации, т. е. от скважности.

Средняя мощность рассеивания индикатора складывается из:

средней мощности, рассеиваемой логической частью схемы управления во время записи информации при напряжении на входе «гашение» индикатора Ur = 0,4 В;

средней мощности, рассеиваемой разрядами регистра, соот­ветствующими включенным элементам, при Uг = 2,4 В;

средней мощности, рассеиваемой разрядами регистра, соот­ветствующими не включенным элементам;

средней мощности, рассеиваемой включенными элементами и их формирователями тока.

Если обозначить через Iпот (при UГ = 0,4 В) и IП0Т (при Ur = = 2,4 В) ток потребления электронной частью индикатора при низком (0,4 В) и при высоком (2,4 В) логических уровнях сигна­ла на входе гашения индикатора; Uип — напряжение питания; Q — скважность; пк — среднее число включенных СИД; Iстб, Uстб — ток потребления и напряжение питания столбца, то после некоторых несложных преобразований мощность рассеивания ин­дикатора может быть представлена в виде

РD=Iпот(при Uг = 0,4 В) UHn+ [IПот(при Ur = 2A В) — I|10.,

(при Uг = 0,4В)] Uin*5nR/Q.35 + IcT6UcT6*5nR/Q*35. (4.1)

Следовательно, снижение мощности рассеивания индикатора может быть достигнуто тремя способами: уменьшением напряже­ния питания логической части индикатора до минимального допустимого значения, уменьшением напряжения питания столб­цов до минимального допустимого значения, увеличением скваж­ности. Уменьшение рассеиваемой мощности за счет уменьшения количества светящихся точек, естественно, неприемлемо, так как это влечет за собой разработку более примитивных шифров и ухудшение качества отображения информации. При разработке аппаратуры отображения информации необходимо обеспечить такой режим работы индикаторов, при котором температура корпуса не превышала бы 100° С (измеряется на выводе 1).

В соответствии с выводами разработчиков индикатора темпе­ратура корпуса индикатора Тк, тепловое сопротивление «корпус индикатора — окружающая среда» Rт, температура среды внутри аппаратуры отображения информации Tа, обусловленная сов­местным воздействием температуры окружающей среды и тепло­выделение элементов индикатора, связаны соотношением

TK = Ta + R,P.

Зависимость максимально допустимого значения теплового сопротивления Rт от Та при Р=1,2 Вт и Tк=100° С приведена на рис. 4.8. Для максимально допустимого значения Тя = 70° С Rт<25° С/Вт.

Зависимость максимально допустимой мощности рассеивания Р от температуры корпуса индикатора приведена на рис. 4.9.



Рис. 4.8. Зависимость теплового сопротивления «корпус — окру­жающая среда» от температуры окружающей среды прибора ИПВ70А-4/5Х7К

Рис. 4.9. Зависимость макси­мально допустимой мощности рассеивания от температуры корпуса индикатора ИПВ70А-4/5Х7К
Оценку электрических режимов эксплуатации в облегченных тепловых режимах следует проводить по графику рис. 1.9 и по (4.1) с учетом среднего количества включенных СИД, характер­ного для данного устройства.

Практические приемы улучшения тепловых режимов работы индикатора связаны с максимальным обеспечением теплоотвода от корпуса индикатора и его выводов. При установке индикаторов в разъемы необходимо увеличивать сечения контактных гнезд разъема и проводов электрического монтажа. При установ­ке индикаторов на печатные платы необходимо максимально увеличивать площадь металлизированных токоведущих дорожек печатной платы, использовать металлические теплоотводы, при­менять теплопроводящие пасты для улучшения теплового контак­та, а в ряде случаев и обдув охлажденным воздухом.

Существует еще один практический способ улучшения тепло­вых режимов работы индикаторов — снижение напряжения пи­тания СИД до минимальной яркости их свечения, обеспечиваю­щей безошибочность считывания в данных условиях работы дан­ного устройства.
^ 4.5. УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ НА ОСНОВЕ БУКВЕННО-ЦИФРОВЫХ ИНДИКАТОРОВ, УПРАВЛЯЕМЫХ СТРОБИРОВАНИЕМ ПО СТРОКАМ
Способ управления БЦИ стробированием по строкам обеспе­чивает работу при меньших импульсных токах. Действительно, независимо от количества индицируемых знакомест, ток через возбужденный светоизлучающий элемент практически всегда не больше чем в 7 — 8 раз превышает постоянный прямой макси­мально допустимый ток через элемент матрицы, так как скваж­ность стробирующих импульсов постоянна и равна 7. Это позво­ляет обеспечивать индикацию большего количества знаков при использовании одного дешифратора — генератора символов. На рис. 4.10 представлена структурная схема управления мат­ричных индикаторов способом стробирования по строкам.



Рис. 4.10. Структурная схема управления буквенно-цифровыми индикаторами (способ стробирования по строкам)
Как и в схеме управления БЦИ способом стробирования по столбцам, записанная с клавиатуры информация через шифра­тор по сигналам счетчика выборки индикаторов поочередно по­ступает на входы регистров памяти символов 1, 2, ..., N. После­довательная выборка информации сигналами счетчика управле­ния перезаписи их указанных регистров позволяет выводить из генератора символов информацию о состоянии первой строки первого, затем второго, третьего и т. д. индикатора в регистры памяти строк соответствующего символа. Формирователи тока строк подготавливают цепь управления светодиодов со стороны генератора символов.

Счетчик стробирования строк, считающий по модулю 7, через формирователи токов строк замыкает контур протекания тока через СИД первых строк всех индикаторов, обеспечивая на них индикацию информации. Затем из генератора символов выби­рается информация о состоянии вторых строк всех индикаторов, она поочередно заносится в соответствующие регистры памяти строк. Счетчик стробирования строк через формирователи токов замыкает контур протекания токов через СИД вторых строк всех индикаторов, высвечивая на них информацию. Таким же обра­зом индицируется информация третьей, четвертой и т. д. строки. При частоте регенерации информации на каждой из строк 100 Гц индикация воспринимается без мельканий.

Однако необходимо учесть, что при создании устройств отоб­ражения информации с большим количеством знакомест (100 и более) приведенная выше схема управления индикаторами ста­новится неприемлема. Так, например, для индикаторов типа ЗЛС340А средний прямой ток через светодиод (Iпр) равен 10 мА, а время экспозиции (tэ,) составляет с учетом записи данных в буферные регистры 1/8 часть от периода кадра (tк). Следова­тельно, импульсный ток СИД (Iимп) должен быть равен 80 мА. Для расчетов импульсных токов в устройстве отображения ин­формации на 100 индикаторов будем считать, что одновременно светится каждый второй СИД, т. е. из 500 СИД в каждой из строк устройства светится 250. Тогда импульсный ток, который должны коммутировать формирователи (усилители) токов строк, будет равен

^ I =Iимп-250 = 0,08*250=20 А.

К источникам питания при переключении электрических цепей с таким током предъявляются достаточно жесткие требования по обеспечению допусков на выходные напряжения. Кроме того, в схемах возникают нежелательные явления, приводящие к сбоям информации, воспроизводимой на индикаторах. Сбои информа­ции возникают из-за значительных бросков тока в цепи питания индикаторов, которые через емкостные связи и общую шину пи­тания (корпус) передаются на источник питания логических схем, формирующих изображение на индикаторах. Для исключе­ния этого явления необходимо разрабатывать специальные схемы управления для устройств отображения информации на боль­шое количество знакомест.
^ 4.6. ПРАКТИЧЕСКАЯ СХЕМА УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ С БОЛЬШИМ КОЛИЧЕСТВОМ ЗНАКОМЕСТ НА ППИ ТИПА ЗЛС340А
В схеме, изображенной на рис. 4.11, представлен один из возможных вариантов связи индикаторов ЗЛС340А с внешним источником информации и способ подключения индикаторов, обеспечивающий коммутацию усилителя строк небольших токов.

В данном случае предполагается, что входная информация поступает в виде биполярного двоичного 32-разрядного кода. В этом виде передаются данные о воспроизводимых символах в виде семиразрядных кодов и о местоположении символов на поле индикаторов. При этом возможно кодирование двумя спосо­бами. Использование любого из способов определяется конкрет­ными задачами.

В табл. 4.2 и 4.3 представлены эти способы кодирования данных.
^ Таблица 4.2. Первый способ кодирования данных

^ Код данных

Код адреса

Приз­нак чет­ности

Резерв

^ Код 3-го символа

Код 2-го символа

Код 1-го символа

Местоположение символов на поле индикатора

32

3130

29282726252423

222120191817

161514131211109

87654321


^ Таблица 4.3. Второй способ кодирования данных

Код данных

Код адреса

Приз­нак чет­ности

Дополнительные данные

Код 2-го символа

Код 1-го символа

№ линейки

Местополо­жение инди­катора в линейке

32

3130292827

26252423222120

19181716151413

1211109

87654321


Первый способ предпочтительнее в том случае, когда внешний источник данных (ЦВМ) имеет мало внешних потребителей. Ад­ресная часть входной информации содержит 8 разщщов, т. е. 256 комбинаций, для передачи данных. Например, на буквенно-цифровой индикатор, состоящий из 120 знакомест, потребуется 40 адресных комбинаций (в одном 32-разрядном информацион­ном слове передаются данные на 3 знакоместа). Таким образом, первый способ кодирования подходит, если аналогичных потреби­телей у источника информации не более 8.


1   ...   12   13   14   15   16   17   18   19   ...   30

Похожие:

Применение полупроводниковых индикаторов iconКлассификация полупроводниковых материалов
К составляет 104 ~ 1010 Ом-1·см-1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность...
Применение полупроводниковых индикаторов icon1. Энергетические уровни твердого тела
Количественный анализ полупроводников и полупроводниковых приборов базируется на зонной теории твердого тела
Применение полупроводниковых индикаторов iconШоколад с научной точки зрения
Маркетологи считают, что один из самых простых и верных индикаторов экономического благополучия той или иной страны – это шоколад....
Применение полупроводниковых индикаторов iconНанотехнологии на основе полупроводниковых материалов
«Нанотехнологии в электронике». Читается он в 9-ом (осеннем) семестре, т е для студентов 5-го курса. Учебным планом предусмотрены...
Применение полупроводниковых индикаторов iconПрименение компл мер для увеличения продовол
«Зелёной революцией» в сельском хоз-ве н-ют применение компл мер для увеличения продовол
Применение полупроводниковых индикаторов iconКонцепция социально-экономического развития Республики Карелия на период до 2017 года
Республики Карелия. Данный документ определяет цели и приоритеты социально-экономической политики Правительства Республики Карелия...
Применение полупроводниковых индикаторов iconРабочая версия программы • июнь 2009 цели и задачи программы главная...
Практическое применение результатов научных разработок для существенного продления периода здоровой жизни человека
Применение полупроводниковых индикаторов iconВ ведение
Применение dc/dc преобразователя для аккумулирования солнечной энергии
Применение полупроводниковых индикаторов icon     в 1887 г князь Б. Потемкин написал книгу «Велосипед   и его...
В 1887 г князь Б. Потемкин написал книгу «Велосипед и его применение в военном деле». В россии появление самостоятельных велосипедных,...
Применение полупроводниковых индикаторов iconСпециализация
Применение нлп и Эриксонианского гипноза в деловой коммуникации и контексте бизнес-тренингов
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница