Применение полупроводниковых индикаторов


НазваниеПрименение полупроводниковых индикаторов
страница2/30
Дата публикации12.04.2013
Размер3.41 Mb.
ТипДокументы
userdocs.ru > Информатика > Документы
1   2   3   4   5   6   7   8   9   ...   30

^ 1.1.2. Шкальные полупроводниковые индикаторы
Современные шкальные индикаторы (ШИ) по своему конст­руктивному исполнению можно разделить на индикаторы в бес­корпусном исполнении, с полимерной герметизацией без свето­провода, со светопроводом, в герметичных стеклокерамических корпусах.

Бескорпусные ШИ предназначены для работы в качестве линейных формирователей изображения в устройствах для запи­си информации на фоточувствительные материалы и в системах тепловидения.

Бескорпусные ШИ просты в производстве, можно монтиро­вать их в большие информационные массивы, осуществлять раз­личные принципы организации считывания информации. Конст­руктивно все они выполнены на одном кристалле, на котором сформированы излучающие элементы с размером поверхности от 30X30 мкм до 50X50 мкм. На кристалле имеются контактные площадки, необходимые для соединения ШИ со схемой.

Приборы с полимерной герметизацией без светопровода не получили широкого распространения и представлены в настоя­щее время одним прибором типа ЗЛС317А-Г/АЛС317А-Г красно­го и зеленого цветов свечения. Приборы позволяют осуществлять бесшовную стыковку.

Шкальные индикаторы со светопроводом — самый многочис­ленный и быстро развивающийся вид ШИ. Номенклатура совре­менных отечественных ШИ превышает 60 типов.

Индикаторы выполнены по гибридной технологии. В качестве основания использованы различные виды модификации металло-керамического держателя типа ДКИ. Выбор этого вида держате­ля важен и потому, что он позволяет внешней коммутацией выбирать любую схему под­ключения плавня (последо­вательную, параллельную или смешанную). Кристалл излучателя крепится к осно­ванию с помощью токопро-водящего клея. Крышка, яв­ляющаяся световодом, изго­тавливается из пластмассы ДАИФ.

Для увеличения контрастности у ряда шкал лицевая сторона световода окрашивается в черный цвет. Для уменьшения взаим­ной засветки сегментов боковые поверхности световода покры­ваются никелем. Металлизация уменьшает взаимную засветку, но одновременно несколько уменьшает силу света.

Все элементы прибора (держатель, кристалл, соединения и крышка со светопроводом) герметизируются в неразъемную мо­нолитную конструкцию оптически прозрачным рассеивающим компаундом. Для увеличения рассеивания света ряд конструкций лицевой стороны прибора покрыт продольными цилиндрическими микролинзами. Индикаторы выпускаются красного, зеленого и желтого цветов свечения. Все ШИ этого вида позволяют осуществлять бесшовную стыковку. Виды информационных полей шкальных индикаторов приведены на рис. 1.2.



Рис. 1.2. Вид информационных нолей шкальных индикаторов
Последней группой шкальных индикаторов являются приборы в герметичных стеклокерамических корпусах. Эти ШИ предназ­начены для применения там же, где используются бескорпусные ШИ, по требуется высокая надежность и механическая проч­ность. В качестве основания для таких ШИ взят стандартный керамический держатель. Кристалл крепится к держателю с по­мощью токопроводящего клея. Герметизация прибора осуществ­ляется плоским оптически прозрачным стеклом с помощью спе­циального клея.
^ 1.1.3. Цифровые полупроводниковые индикаторы
Наиболее распространенным видом ППИ следует считать цифровые индикаторы (ЦИ), поскольку подавляющее количество информации воспроизводится в цифровом виде (часы, калькуля­торы, дальномеры, высотомеры и т. д.). В настоящее время выпускается свыше 150 типов ЦИ. Все ЦИ по своему конструк­тивному исполнению можно разделить на следующие группы: бескорпусные монолитные, монолитные в полимерной гермитиза-ции, гибридные с различными светопроводами, монолитные в стеклокерамическом корпусе.

Конфигурация информационных полей цифровых индикаторов приведена на рис. 1.3.



Рис. 1.3. Конфигурация информационных полей цифровых индикаторов
Бескорпусные ЦИ — сравнительно малочисленная группа индикаторов. Конструктивно они выполнены на монолитном кристалле с излучающими элементами и контактными площад­ками для присоединения выводов. Примером такого ЦИ является индикатор для наручных часов АЛС313А-5.

Основным технологическим преимуществом изготовления монолитных индикаторов является возможность создания любой конфигурации излучающих элементов с высокой точностью, существенным недостатком — большой расход полупроводни­кового материала при малой плотности элементов отображе­ния.

Вторым видом ЦИ являются монолитные индикаторы в поли­мерной герметизации. Это довольно ограниченная группа прибо­ров, их достоинства и недостатки таких же, как у единичных приборов в полимерной герметизации, кроме того, индикаторы требуют большого расхода излучающего материала. Группа этих индикаторов малочисленна и в основном включает в себя прибо­ры с малым размером цифры (2,5 и 5 мм). Типичными представителями таких ЦИ являются приборы типа ЗЛС314А (АЛС314А) и ЗЛС320А-Е. Индикаторы типа ЗЛС320А-Е (АЛС320А-Е) собираются на никелевой рамке, на которую крепятся излучающие кристаллы по одному на каждый сегмент, и целиком герметизируются полимером, цвет которого совпадает с цветом, излучаемым кристаллом. Для улучшения контраста сторона, противоположная излучающей поверхности, чернится. Другой тип этой группы цифровых индикаторов — ЗЛС314А (АЛС314А) — имеет монолитный бескорпусный кристалл, гер­метизированный красным полимером.

Наиболее распространенным типом ЦИ являются приборы гибридной конструкции с использованием принципа рассеивания света. Основу конструкции составляет керамический или тексто­литовый держатель, на котором крепятся с помощью токопрово-дящего клея излучающие кристаллы.

Для получения равномерного и достаточно интенсивного излучения в настоящее время широко используются два типа светопроводов: полый светопровод с рассеивающей пленкой и светопровод с отражающими зеркальными стенками, заполнен­ный специальным полимером, в который добавляют рассеиваю­щие свет частицы (стекло, кварц).

Конструкции этих типов используются при размере цифры более 5 мм. Вариантом гибридной конструкции является индика­тор с переменным цветом свечения типа ИПЦ02А, Б-1/7КЛ. Индикатор в зависимости от схемы подключения излучает красный или зеленый цвет, что расширяет функциональные возможности систем отображения, применяющих эти индикаторы. Такие индикаторы дают не только цифровую, но и цветовую информацию. Например, красный цвет означает высоту, а зеле­ный — дальность или цифры зеленого цвета индицируют безо­пасный режим работы, красные — аварийный режим. В приборе используется двухкристальный принцип создания различных цветов, красный на основе GaAsP, зеленый — GaP. Аналогично единичному индикатору, работающему на излучателе GaAs и антистоксовом люминофоре, выпускается ЦИ типа ЗЛС359А1, Б1, имеющий те же недостатки и достоинства, что и единичные индикаторы. Среди цифровых индикаторов имеются приборы со встроенным управлением 490ИП1 (К490ИП1) и 490ИП2 (К490ИП2).

Последней группой конструктивного исполнения ЦИ являются индикаторы полой конструкции на основе керамического держа­теля, герметизированного стеклянной крышкой. Эти приборы применяются там, где требуется высокая надежность и устой­чивость к жестким механическим и климатическим условиям эксплуатации. Типичными представителями являются приборы типа ЗЛС339А, ЗЛС348А и пятиразрядный индикатор ИПЦ06А--5/40К.
^ 1.1.4. Буквенно-цифровые полупроводниковые индикаторы
Буквенно-цифровые индикаторы (БЦИ) позволяют отобра­жать цифры арабские и римские, буквы русского, латинского и греческого алфавитов и ряд других знаков и символов.

По своему конструктивному исполнению БЦИ можно раз­делить на две группы:

БЦИ монолитной конструкции со светопроводом,

БЦИ полой конструкции без светопровода.

К первой группе приборов относятся ЗЛС340А (АЛС340А) и ЗЛС357А (АЛС357А), имеющие 35 излучающих элементов (пять в строке и семь в столбце) и левую децимальную точку. Индикаторы собраны на многослойном керамическом держателе, на который с помощью токопроводящего клея крепятся излучате­ли. Вся конструкция покрывается полимерным светопроводом, заполненным светопроводящим компаундом. Второй разновид­ностью БЦИ является конструкция на керамическом держателе, который герметизируется стеклянной крышкой. Эта конструкция обладает высокой устойчивостью к внешним климатическим и механическим воздействиям. Наибольший интерес представ­ляют БЦИ в стеклокерамическом корпусе со встроенным управ­лением, к которым относятся приборы типа ИПВ70А-4/5Х7К, ИПВ71А-4/5Х7К и ИПВ72А-4/5Х7К, имеющие высоту 4,1 и 9 мм соответственно. Индикаторы позволяют осуществлять бесшовную стыковку как по горизонтали, так и по вертикали и создавать, таким образом, табло любых размеров. Наличие встроенного управления и мультиплексный режим работы позво­ляют резко сократить число выводов в схемах, а следовательно, и число паек (по сравнению с применением дискретных индика­торов) к уменьшить потребляемую мощность. Выпускается один тип индикатора ЗЛС363А на основе излучателя GaAs и антисток­сового люминофора.
^ 1.1.5. Графические полупроводниковые индикаторы
Графические индикаторы (ГИ) являются с точки зрения отображаемой информации наиболее универсальными и позволя­ют воспроизводить любую информацию. Конструктивно выпол­нены по гибридной технологии на держателе, состоящем из нескольких сформированных пластифицированных керамических лент, на которые металлизированной пастой наносится опреде­ленная топология рисунка электрической схемы с «посадочными» местами для светоизлучающих кристаллов. Излучатели закры­ваются крышкой со световодами, заполненными прозрачным компаундом. Выпускаемые графические индикаторы имеют 64 излучающих элемента (8X8), размещенных в корпусе размером 10X10 мм или 20X20 мм. Среди графических индикаторов имеется прибор ИПГ01А-8Х8Л, основанный на принципе двои-

ного преобразования электрической энергии (излучателя GaAs и антистоксового люминофора).

Конструкция графических индикаторов позволяет осущест­вить бесшовную стыковку, что дает возможность использовать их для создания табло, экрана или бегущей строки. Использо­вание одного графического индикатора неэффективно и нецеле­сообразно.
^ 1.2. ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВЫХ ИНДИКАТОРОВ
Для того чтобы система или устройство отображения инфор­мации с применением ППИ работала надежно и эффективно, необходимо разработчику знать полную характеристику применя­емого индикатора. Система параметров, наиболее полно описы­вающая все свойства и особенности ППИ, включает в себя:

параметры, характеризующие ППИ как элемент системы «оператор — индикатор» и определяющие качество отображения информации и надежность ее восприятия;

параметры, характеризующие ППИ как элемент электриче­ской цепи;

параметры, характеризующие возможность функционирова­ния ППИ в условиях воздействия различных эксплуатационных факторов (вибрации, ударов, температуры и т. п.);

параметры, характеризующие надежность работы.
^ 1.2.1. Светотехнические и эргономические параметры полупроводниковых индикаторов
К первой группе параметров относятся светотехнические и эргономические параметры. Основным светотехническим па­раметром для ППИ в СССР и за рубежом принята сила света, определяемая согласно [5] как световой поток, приходящийся на единицу телесного угла в направлении, перпендикулярном плоскости излучающего кристалла. Для практических целей применяются несколько понятий силы света [6], которые приве­дены в табл. 1.1.
^ Таблица 1.1. Термины и определения силы света


Термин и обозначение

Определение

Типы ППИ, для которых применяется термин

Сила света элемента Iаэ

Сила света одного эле­мента

Единичные, шкальные, цифровые монолитные

Сила света индика­тора Iс.

Сила света индикатора, равная световому потоку всех элементов отображения

То же

Средняя сила света Iа ср,

Отношение суммарной си­лы света всех элементов отображения информации ин­дикатора к их числу

Все типы многоэле­ментных индикаторов


Для контроля разброса силы света между отдельными эле­ментами ППИ для всех индикаторов, кроме единичных, применя­ется расчетный параметр — неравномерность силы света. При неравномерности, равной 2,5 и менее, она определяется отноше­нием максимального значения силы света элемента к минималь­ному (бIv = Iv.Макс/Iv.мин). При значении неравномерности более 2,5 она определяется из соотношений

(1.1) (1.2)

где 6Iv и 6Iv +1 — отрицательная и положительная неравно­мерности силы света индикатора; Iv,op — средняя сила света инди­катора.

Аналогично определяется неравномерность силы света между разрядами у многоразрядных индикаторов, только в этом случае берется максимальное и минимальное значения разряда и сред­няя сила света всего индикатора. Для сравнения ППИ с другими типами ЗСИ для рядя типов приводятся значения яркости и неравномерности яркости, определяемой по аналогии с неравно­мерностью силы света. Сила света ППИ измеряется в милли- и микрокандрлах, яркость, как правило, в кд/м2.

Основной светотехнический параметр ----- сила г.ветя — зависит от двух эксплуатационных факторов: прямого тока (Постоянного и импульсного) и температуры окружающей среды. Зависимость силы света для ПНИ различного конструктив,юго исполнения, имеющих в качестве излучателя кристаллы, изготовленные из различных материалов, приведена на рис. 1.4. Характер зависи­мости практически линейный.

Аналогична зависимость от импульсного прямого тока, кото­рая приведена д.ля буквенно-цифровых индикаторов разного цвета свечения на рис: 1.5.



Рис. 1.4. Зависимость силы света от постоянного прямого тока для индика­торов:

а — ЗЛС324А красного цвета (GaAsP);6 — ИПЦ01 А-1/7К красного цвета (GaAIAs);e — ЗЛС338А зеленого цвета (GaP); г — ЗЛС358А зеленого цвета (GaP)
Существенное влияние на силу света оказывает температура. С повышением температуры окружающей среды до 85° С сила света уменьшается на 50- 70% (при типичном значении 60%). При понижении температуры до минус 60° С сила света увели­чивается в 1,5-3,5 раза (арп типичном значении — в 2,5 раза).

На рис. 1.6 приведена зависимость силы света от темпера­туры для различных значений прямого тока для индикатора ЙПГ02А-8Х8Л. Из рисунка видно, что значение прямого тока практически не влияет на характер зависимости силы света от температуры. Изменение яркости от температуры для ППИ аналогично изменению силы света. Пример зависимости яркости от температуры приведен на рис. 1.7.



Рис, 1.5. Зависимость силы света от импульсного прямого тока для инди­каторов:

а — ИПВОЗА- 1/5Х7К красного цвета (GaAIAs); б — ИПВОЗБ-1/5Х7Л зеле­ного цвета (GaP); в — ИПВОЗ-1/5Х7Ж желтого цвета (GaP)


1   2   3   4   5   6   7   8   9   ...   30

Похожие:

Применение полупроводниковых индикаторов iconКлассификация полупроводниковых материалов
К составляет 104 ~ 1010 Ом-1·см-1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность...
Применение полупроводниковых индикаторов icon1. Энергетические уровни твердого тела
Количественный анализ полупроводников и полупроводниковых приборов базируется на зонной теории твердого тела
Применение полупроводниковых индикаторов iconШоколад с научной точки зрения
Маркетологи считают, что один из самых простых и верных индикаторов экономического благополучия той или иной страны – это шоколад....
Применение полупроводниковых индикаторов iconНанотехнологии на основе полупроводниковых материалов
«Нанотехнологии в электронике». Читается он в 9-ом (осеннем) семестре, т е для студентов 5-го курса. Учебным планом предусмотрены...
Применение полупроводниковых индикаторов iconПрименение компл мер для увеличения продовол
«Зелёной революцией» в сельском хоз-ве н-ют применение компл мер для увеличения продовол
Применение полупроводниковых индикаторов iconКонцепция социально-экономического развития Республики Карелия на период до 2017 года
Республики Карелия. Данный документ определяет цели и приоритеты социально-экономической политики Правительства Республики Карелия...
Применение полупроводниковых индикаторов iconРабочая версия программы • июнь 2009 цели и задачи программы главная...
Практическое применение результатов научных разработок для существенного продления периода здоровой жизни человека
Применение полупроводниковых индикаторов iconВ ведение
Применение dc/dc преобразователя для аккумулирования солнечной энергии
Применение полупроводниковых индикаторов icon     в 1887 г князь Б. Потемкин написал книгу «Велосипед   и его...
В 1887 г князь Б. Потемкин написал книгу «Велосипед и его применение в военном деле». В россии появление самостоятельных велосипедных,...
Применение полупроводниковых индикаторов iconСпециализация
Применение нлп и Эриксонианского гипноза в деловой коммуникации и контексте бизнес-тренингов
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница