Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос  


НазваниеЭкзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос  
страница8/39
Дата публикации03.08.2013
Размер5.79 Mb.
ТипЭкзаменационные вопросы
userdocs.ru > Информатика > Экзаменационные вопросы
1   ...   4   5   6   7   8   9   10   11   ...   39

^ Мутации по типу замены азотистых оснований. Эти мутации происходят в силу ряда конкретных причин. Одной из них может быть возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Если такая измененная форма основания остается не замеченной ферментами репарации, то при ближайшем цикле репликации она может присоединять к себе другой нуклеотид. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты (рис. 3.18). Образующийся при этом урацил, не замеченный ферментом ДНК-гликозилазой, при репликации соединяется с аденином, который впоследствии присоединяет тимидиловый нуклеотид. В результате пара Ц—Г замещается в ДНК парой Т—А (рис. 3.19, I). Дезаминирование метилированного цитозина превращает его в тимин (см. рис. 3.18). Тимидиловый нуклеотид, являясь естественным компонентом ДНК, не обнаруживается ферментами репарации как изменение и при следующей репликации присоединяет адениловый нуклеотид. В результате вместо пары Ц—Г в молекуле ДНК также появляется пара Т—А (рис. 3.19, II).

Рис. 3.18. Спонтанное дезаминирование цитозина
Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Если эта ошибка остается не замеченной ферментами репликации и репарации, измененное основание включается в процесс репликации, что нередко приводит к замене одной пары на другую. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду. При последующей репликации 5-БУ охотнее присоединяет к себе не аденин, а гуанин. Гуанин в ходе дальнейшего удвоения образует комплементарную пару с цитозином. В итоге пара А—Т заменяется в молекуле ДНК парой Г—Ц (рис. 3.20).


Рис. 3. 19. Мутации по типу замены основания

(дезаминирование азотистых оснований в цепи ДНК):
I — превращение цитозина в урацил, замена Ц—Г-пары на Т—А-пару;

II — превращение метил-цитозина в тимин, замена Ц—Г-пары на Т—А-пару
Из приведенных примеров видно, что изменения структуры молекулы ДНК по типу замены оснований возникают либо до, либо в процессе репликации первоначально в одной полинуклеотидной цепи. Если такие изменения не исправляются в ходе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК.

Рис. 3.20. Мутации по типу замены оснований

(включение аналога азотистого основания при репликации ДНК)
Следствием замены одной пары комплементарных нуклеотидов на другую является образование нового триплета в нуклеотидной последовательности ДНК, кодирующей последовательность аминокислот в пептидной цепи. Это может и не отразиться на структуре пептида в том случае, если новый триплет будет «синонимом» прежнего, т.е. будет кодировать ту же аминокислоту. Например, аминокислота валин шифруется четырьмя триплетами: ЦАА, ЦАГ, ЦАТ, ЦАЦ. Замена третьего основания в любом из этих триплетов не изменит его смысла (вырожденность генетического кода).

В том случае, когда вновь возникший триплет шифрует другую аминокислоту, изменяются структура пептидной цепи и свойства соответствующего белка. В зависимости от характера и места случившейся замены специфические свойства белка изменяются в разной степени. Известны случаи, когда замена лишь одной аминокислоты в пептиде существенно влияет на свойства белка, что проявляется в изменении более сложных признаков. Примером может служить изменение свойств гемоглобина человека при серповидно-клеточной анемии (рис. 3.21). В таком гемоглобине—(HbS) (в отличие от нормального НbА) — в р-глобиновых цепях в шестом положении глутаминовая кислота заменена валином. Это является следствием замены одного из оснований в триплете, шифрующем глутаминовую кислоту (ЦТТ или ЦТЦ). В результате появляется триплет, шифрующий валин (ЦАТ или ЦАЦ). В данном случае замена одной аминокислоты в пептиде существенно изменяет свойства глобина, входящего в состав гемоглобина (снижается его способность связываться с 02), у человека развиваются признаки серповидно-клеточной анемии.

В некоторых случаях замена одного основания на другое может привести к появлению одного из нонсенс-триплетов (АТТ, АТЦ, АЦТ), не шифрующего никакой аминокислоты. Последствием такой замены будет прерывание синтеза пептидной цепи. Подсчитано, что замены нуклеотидов в одном триплете приводят в 25% случаев к образованию триплетов-синонимов; в 2—3 —бессмысленных триплетов, в 70— 75% —к возникновению истинных генных мутаций.

Таким образом, мутации по типу замены оснований могут возникать как в результате спонтанных изменений структуры основания в одной из цепей уже существующей двойной спирали ДНК, так и в ходе репликации во вновь синтезируемой цепи. В том случае, если эти изменения не исправляются в процессе репарации (или, наоборот, возникают в ходе репарации), они фиксируются в обеих цепях и далее будут воспроизводиться в следующих циклах репликации. Следовательно, важным источником возникновения таких мутаций являются нарушения процессов репликации и репарации.

^ Мутации со сдвигом рамки считывания. Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Большая часть изученных мутаций, вызывающих сдвиг рамки, обнаружена в последовательностях, состоящих из одинаковых нуклеотидов.

Изменению числа нуклеотидных пар в цепи ДНК способствуют воздействия на генетический материал некоторых химических веществ, например акридиновых соединений. Деформируя структуру двойной спирали ДНК, они приводят к вставке дополнительных оснований или их выпадению при репликации. Примером служат мутации, полученные у фага Т4 при воздействии профлавина. Они состоят во включении или удалении всего одной нуклеотидной пары. Важной причиной изменения количества нуклеотидных пар в гене по типу крупных делений (выпадений) может быть рентгеновское облучение. У плодовой мухи, например, известна мутация гена, контролирующего окраску глаза, которая вызывается облучением и состоит в делении порядка 100 нуклеотидных пар.

Рис. 3.21. Плейотропный эффект замены одной аминокислоты в β-цепи гемоглобина человека, приводящей к развитию серповидно-клеточной анемии
Большое число мутаций по типу вставок происходит вследствие включения в последовательность нуклеотидов подвижных генетических элементов — транспозонов. Транспозоны это достаточно протяженные нуклеотидные последовательности, встроенные в геномы эу- и прокариотических клеток, способные самопроизвольно менять свое положение (см. разд. 3.6.4.3). С определенной вероятностью вставки и делении могут возникать в результате ошибок рекомбинации при неравноценном внутригенном кроссинговере (рис. 3.22).


Рис. 3.22. Мутации со сдвигом рамки считывания (неравноценный обмен при внутригенном кроссинговере):

I — разрывы аллельпых генов в разных участках и обмен фрагментами между ними;

II — выпадение 3-й и 4-й пар нуклеотидов, сдвиг рамки считывания;

III —удвоение 3-й и 4-й пар нуклеотидов, сдвиг рамки считывания

Рис. 3.23. Следствие изменения количества нуклеотидных пар в молекуле ДНК
Сдвиг рамки считывания в результате вставки одного нуклеотида в кодогенную цепь приводит к изменению состава зашифрованного в ней пептида

При непрерывности считывания и неперекрываемости генетического кода изменение количества нуклеотидов, как правило, приводит к сдвигу рамки считывания и изменению смысла биологической информации, записанной в данной последовательности ДНК (рис. 3.23). Однако, если количество вставленных или утраченных нуклеотидов кратно трем, сдвига рамки может не произойти, но это приведет к включению дополнительных аминокислот или выпадению части их из полипептидной цепи. Возможным следствием сдвига рамки является возникновение нонсенс-триплетов, ведущее к синтезу укороченных пептидных цепей.

^ Мутации по типу инверсии нуклеотидных последовательностей в гене. Данный тип мутаций происходит вследствие поворота участка ДНК на 180°. Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка.


17.Мутации, их классификации и механизмы возникновения. Медицинское и эволюционное значение.
Генные мутации

 

1. Изменчивость, ее причины и методы изучения. Классификация форм изменчивости. Фенотипическая изменчивость и ее компоненты. Наследуемость признаков

2. Мутационная изменчивость. Основные положения мутационной теории. Общие свойства мутаций.

3. Генные мутации. Последствия мутаций. Методы выявления генных мутаций.

4. Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций.

 

1. Изменчивость, ее причины и методы изучения. Классификация форм изменчивости. Фенотипическая изменчивость и ее компоненты. Наследуемость признаков

 

Самовоспроизведение с изменением – это одно из основных свойств жизни. Термин «изменчивость» служит для обозначения различных понятий; как и большинство других терминов, он полисемантичен (многозначен). Юрий Александрович Филипченко различал два основных подхода к определению изменчивости.

1. Изменчивость как состояние. В этом значении термин «изменчивость» служит для обозначения отличий биологических объектов друг от друга в данный момент времени. Всегда существуют различия между частями одного организма, между разными организмами в популяции, между разными внутрипопуляционными группировками, между популяциями.

2. Изменчивость как процесс. В этом значении термин «изменчивость» служит для обозначения изменения биологического объекта во времени. В этом случае изменчивость отражает развитие особи, отличие потомков от родителей.

Любая наблюдаемая изменчивость является фенотипической. В свою очередь, фенотипическая, или общая изменчивость включает три компонента:

–  Наследственная (генетическая, или генотипическая изменчивость) – в значительной мере обусловлена влиянием генетических факторов. Например, в сходных условиях выращивается несколько сортов одного вида растений. Тогда различия между результатами эксперимента (например, урожайность) обусловлены генетическими особенностями каждого сорта. В основе генетической изменчивости лежит мутационная и комбинативная изменчивость.

Ненаследственная (модификационная) изменчивость – в значительной мере обусловлена действием негенетических (экзогенных) факторов. Например, один сорт растений выращивается в разных условиях. Тогда различия между результатами эксперимента (например, урожайность) обусловлены влиянием условий выращивания растений.

–  Неконтролируемая (остаточная изменчивость) – обусловлена неконтролируемыми (по крайней мере, в данном эксперименте) факторами.

Для разных признаков влияние генотипа и условий среды на общую фенотипическую изменчивость неодинаково. Например, окраска шерсти, жирномолочность у крупного рогатого скота, масса яиц у кур зависят, в основном, от особенностей породы (т.е. от генотипа) – эти признаки обладают высокой наследуемостью. Другие признаки: качество шерсти, общая удойность у КРС, яйценоскость у кур – зависят, в основном, от условий выращивания и содержания – эти признаки обладают  низкой наследуемостью.

 

^ 2. Мутационная изменчивость. Основные положения мутационной теории. Общие свойства мутаций

 

Термин «мутация» (от лат. mutatio – изменение) долгое время использовался в биологии для обозначения любых скачкообразных изменений. Например, немецкий палеонтолог В. Вааген называл мутацией переход от одних ископаемых форм к другим. Мутацией называли также появление редких признаков, в частности, меланистических форм среди бабочек.

Современные представления о мутациях сложились к началу XX столетия. Например, российский ботаник Сергей Иванович Коржинский в 1899 г. разработал эволюционную теорию гетерогенезиса, основанную на представлениях о ведущей эволюционной роли дискретных (прерывистых) изменений.

Однако наиболее известной стала мутационная теория голландского ботаника Хьюго (Гуго) Де Фриза (1901 г.), который ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.  

 

Де Фриз разработал мутационную теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1…2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организацией хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетанием aabb).

 

Основные положения мутационной теории Де Фриза остаются справедливыми и по сей день (разумеется, с некоторыми современными уточнениями):

 

 

^ Положения мутационной теории

Де Фриза

Современные уточнения

1

Мутации возникают внезапно, без всяких переходов.

существует особый тип мутаций, накапливающихся в течение ряда поколений  (прогрессирующая амплификация в интронах).

2

Успех в выявлении мутаций зависит от числа проанализированных особей.

без изменений

3

Мутантные формы вполне устойчивы.

при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)

4

Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды).

существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта

5

Одни и те же мутации могут возникать повторно.

это касается генных мутаций; хромосомные аберрации уникальны и неповторимы

6

Мутации возникают в разных направлениях, они могут быть вредными и полезными.

сами по себе мутации не носят адаптивный характер; только в ходе эволюции, в ходе отбора оценивается «полезность», «нейтральность» или «вредность» мутаций в определенных условиях; при этом «вредность» и «полезность» мутаций зависит от генотипической среды

 

В настоящее время принято следующее определение мутаций:

Мутации – это качественные изменения генетического материала, приводящие к изменению тех или иных признаков организма.

 

Организм, во всех клетках которого обнаруживается мутация, называется мутантом. Это происходит в том случае, если данный организм развивается из мутантной клетки (гаметы, зиготы, споры). В ряде случаев мутация обнаруживается не во всех соматических клетках организма; такой организм называют генетической мозаикой. Это происходит, если мутации появляются в ходе онтогенеза – индивидуального развития. И, наконец, мутации могут происходить только в генеративных клетках (в гаметах, спорах и в клетках зародышевого пути – клетках-предшественницах спор и гамет). В последнем случае организм не является мутантом, но часть его потомков будет мутантами.

Различают «новые» мутации (возникающие de novo) и «старые» мутации. Старые мутации – это мутации, появившиеся в популяции задолго до начала их изучения; обычно о старых мутациях едет речь в генетике популяций и в эволюционной теории. Новые мутации – это мутации, появляющиеся в потомстве немутантных организмов (♀ АА × ♂ АААа); обычно именно о таких мутациях идет речь в генетике мутагенеза.

Мутация – это случайное явление, т.е. невозможно предсказать: где, когда и какое изменение произойдет. Можно только оценить вероятность мутации в популяциях, зная фактические частоты определенных мутаций. Например, вероятность появления у кишечной палочки устойчивости к тетрациклину равна 10–10 (одна десятимиллиардная), поскольку лишь одна из 10 миллиардов клеток обнаруживает устойчивость к этому антибиотику (зато все потомство этой бактерии будет устойчивым к тетрациклину).

Установлено, что мутабильность гена (т.е. частота появления определенной мутации) зависит от природы гена: существуют гены, склонные  к мутированию, и относительно стабильные гены.

 

Вероятность события – это математическая  абстракция, математическое ожидание того, или иного события. Вероятность случайного события лежит в пределах от 0 до 1. Математическое ожидание определяется вне опыта (априорно), на основании дедуктивных рассуждений. Например, при подбрасывании монеты вероятность выпадения «орла» равна вероятности выпадения «решки» и равна 50% или 0,5: РО=РР=0,5.

Однако в биологии вероятность многих событий не может быть найдена вне опыта, например, вероятность рождения ребенка с синдромом Дауна. Тогда понятие математической вероятности подменяется понятием статистической вероятности. Статистическая вероятность определяется опытным путем (апостериорно). Численно статистическая, или апостериорная вероятность события равна относительной частоте этого события. Например, на 700 новорожденных приходится один ребенок с болезнью Дауна. Тогда статистическая вероятность рождения ребенка с этим заболеванием равна 1/700 ≈ 0,0014.

Относительная частота колеблется около некоторого постоянного числа, которое и является математическим ожиданием события. Чем больше проведено наблюдений, тем больше апостериорная вероятность приближается к математическому ожиданию данного события.

В одной и той же клетке может произойти несколько мутаций. Однако единичная мутация – это редкое событие. Поэтому для нахождения вероятности одновременного появления двух, трех и более мутаций нельзя использовать правило перемножения вероятностей. Вероятность того, что в клетке не произойдет ни одной мутации, произойдет одна мутация или более рассчитывается по закону Пуассона (чем выше вероятность одиночной мутации, тем более симметричной становится кривая распределения):



^ Множественные аллели и генокопии

 

В одном и том же гене могут возникать разные мутации: тогда возникают серии множественных аллелей. Например, у мушки дрозофилы ген white («уайт» – белый), определяющий окраску глаз представлен последовательно доминирующими аллелями: w+ (темно-красные глаза) > wch (вишневые) > wa (абрикосовые) > wbf (тускло-желтые) > w (белые) и т.д. У кроликов ген, определяющий степень выраженности альбинизма, представлен последовательно доминирующими аллелями: C (нормальная, неальбинистическая окраска) > cch (шиншилловая) > ch (горностаевая) > с (полный альбинизм). У мышей ген, определяющий общую окраску тела, также представлен последовательно доминирующими аллелями: AY (желтая) > AL (агути со светлым брюхом) > A (агути, норма) > at (черная с подпалинами) > a (черная). Исходное, нормальное состояние аллеля традиционно называется дикими типом (часто обозначается символом +). Диким типом называют также нормальный генотип и нормальный фенотип. Сочетание двух мутантных аллелей называется компаундом (например, wch // wbf или at // a).

В то же время, в неаллельных, т.е. в разных генах (или в разных участках одного и того же гена) могут возникать мутации со сходным фенотипическим эффектом. Такие мутации называются генокопиями. Генокопии необходимо учитывать в здравоохранении (сходные наследственные заболевания – например, гемоглобинопатии – могут быть обусловлены разными мутациями), в селекционном процессе (например, мутациями в разных генах может быть обусловлена устойчивость к фитопатогенным грибам у разных сортов растений).

 

^ Общие свойства мутаций

 

В настоящее время считается, что многие мутации не оказывают существенного влияния на жизнеспособность особей; такие мутации называются нейтральными. Нейтральность мутаций часто обусловлена тем, что большинство мутантных аллелей рецессивно по отношению к исходному аллелю. Однако существуют мутации, приводящие к гибели организма (летальные) или заметно снижающие его жизнеспособность (полулетальные). В определенных условиях мутации могут повышать жизнеспособность организмов (как в примере с серповидноклеточной анемией).

По способности передаваться при половом размножении различают соматические и генеративные мутации. Соматические мутации не затрагивают половые клетки и не передаются потомкам. В результате соматических мутаций возникают генетические мозаики. Генеративные мутации происходят в половых клетках и могут передаваться потомкам. При участии мутантных половых клеток образуются полностью мутантные организмы.

Мутации возникают как в аутосомах, так и в половых хромосомах; соответственно различают аутосомные мутации и мутации, сцепленные с полом. Кроме того, по возможности проявления в фенотипе различают доминантные, полудоминантные и рецессивные мутации (заметим, что подавляющее большинство мутаций является рецессивными).

Мутантный аллель может возвращаться в исходное состояние. Тогда первоначальная мутация называется прямой (например, переход ^ А → а), а другая – обратной мутацией, или реверсией (например, обратный переход а → А).

 

Классификации мутаций

 

Мутации классифицируют на основании различных критериев. Например, по уровню фенотипического проявления различают следующие мутации: биохимические (изменяется структура белков); физиолого-биохимические (изменяется обмен веществ); онтогенетические (изменяется характер онтогенеза); физиолого-репродуктивные (изменяются плодовитость, границы репродуктивного периода); анатомо-морфологические (изменяется внутреннее и внешнее строение организмов); этологические (поведенческие).

По уровню организации генетического материала, затронутого изменением, все мутации делят на генные, хромосомные и геномные.

 

^ 3. Генные мутации. Последствия мутаций. Методы выявления генных мутаций

 

Генные мутации выражаются в изменении структуры отдельных участков ДНК. По своим последствиям генные мутации делятся на две группы: мутации без сдвига рамки считывания и мутации со сдвигом рамки считывания.

 

^ Мутации без сдвига рамки считывания происходят в результате замены нуклеотидных пар, при этом общая длина ДНК не изменяется. В результате возможна замена аминокислот, однако из-за вырожденности генетического кода возможно и сохранение структуры белка.

 

Пример 1. Замена аминокислотного остатка в составе полипептида (миссенс–мутации). В состав молекулы гемоглобина человека входят две a-цепи (a-цепь закодирована в 16-ой хромосоме) и две b-цепи (b-цепь закодирована в 11-ой хромосоме). В состав b-цепи входит 146 аминокислотных остатков, при этом в нормальной b–цепи шестым аминокислотным остатком является глутаминовая кислота. С участием нормальной b-цепи образуется нормальный гемоглобин – HbA. В нетранскрибируемой нити участка ДНК, кодирующего b-цепь, глутаминовая кислота закодирована триплетом ГАА. Если же в результате мутации в ДНК произойдет замена триплета ГАА на триплет ГТА, то на месте глутаминовой кислоты в молекуле гемоглобина в соответствии с генетическим кодом появится валин. В итоге вместо гемоглобина HbA появится новый гемоглобин – HbS. Такая замена всего лишь одного нуклеотида и одной аминокислоты приводит к развитию тяжелого заболевания – серповидноклеточной анемии.

 

На клеточном уровне серповидноклеточная анемия проявляется в том, что при гипоксии (недостатке кислорода) эритроциты приобретают форму серпа и теряют способность к нормальному транспорту кислорода. Гомозиготы HbS/HbS умирают в раннем детстве. Зато гетерозиготы HbA/HbS характеризуются слабо измененными эритроцитами. При этом изменение формы эритроцитов значительно повышает устойчивость гетерозигот к малярии. Поэтому в тех регионах Земли, где свирепствует малярия (например, в Африке), отбор действовал в пользу гетерозигот. Таким образом, серповидноклеточная анемия – это пример относительности  «полезности» и «вредности» мутаций.

 

Пример 2. Мутация без замены аминокислотного остатка в составе полипептида (сеймсенс-мутации). Если в нетранскрибируемой нити участка ДНК кодирующего b–цепь гемоглобина, произойдет замена триплета ГАА на триплет ГАГ, то из-за избыточности генетического кода замены глутаминовой кислоты не произойдет. В итоге структура b–цепи гемоглобина не изменится, и в эритроцитах будет обнаруживаться только нормальный гемоглобин HbA. Таким образом, вовсе не любая генная мутация проявляется в фенотипе.

Особую группу образуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта. Это связано с заменой аминокислотных остатков в пассивной части белка: такие замены не оказывают существенного влияния на структуру и функции белка.

 

^ Мутации со сдвигом рамки считывания (фреймшифты) происходят в результате вставки или потери нуклеотидных пар, при этом общая длина ДНК изменяется. В результате происходит полное изменение структуры белка.

Однако если после вставки пары нуклеотидов происходит потеря пары нуклеотидов (или наоборот), то аминокислотный состав белков может восстановиться. Тогда две мутации хотя бы частично компенсируют друг друга. Это явление называется внутригенной супрессией.

 





Мутации со сдвигом рамки считывания составляют ~ 80% от всех генных мутаций. Вставки иначе называются инсерциями, а потери – эксцизиями. Процесс образования вставок называется инсерционным мутагенезом. Инсерционный мутагенез необходимо учитывать в генной инженерии. 

 

Нонсенс–мутации. Особую группу генных мутаций составляют нонсенс-мутации с появлением стоп-кодонов (замена смыслового кодона на стоп-кодон). Нонсенс-мутации могут возникать как вследствие замен нуклеотидных пар, так и с потерями или вставками. С появление стоп-кодонов синтез полипептида вообще обрывается. В результате могут возникать нуль-аллели, которым не соответствует ни один белок. Соответственно, возможно и обратное явление: замена нонсенс-кодона на смысловой кодон. Тогда длина полипептида может увеличиваться.

 

Дополнение 1. Существуют особые мутации, влияющие на экспрессию генов у эукариот

1. Мутации, изменяющие степень компактизации ДНК. В гигантских политенных хромосомах и в хромосомах типа ламповых щеток описаны мутации, инактивирующие ген, расположенный в каком-либо одном участке ДНК, т.е. блокирующие декомпактизацию хроматина. Скрещивание гетерозигот по таким регуляторным мутациям в F2 дает расщепление 3:1, указывая на то, что они затрагивают единичные менделирующие факторы.

2. Гомеозисные мутации. Изменяют порядок экспрессии генов. Фенотипический эффект гомеозисных мутаций заключается в превращении одних органов в другие. Например, у мушки дрозофилы мутация группы bithorax, контролирующих развитие грудных и брюшных сегментов у дрозофилы, может приводить к появлению крылоподобных образований вместо галтеров; мутации группы antennapedia выражаются в том, что у насекомых на месте антенн вырастают ножки; мутации ophthalmoptera – развитие крыла из имагинального диска глаза; мутации proboscipedia – развитие ноги или части антенны (в зависимости от температуры) вместо хоботка; у мутантов tumorous head ткани головы замещаются другими типами тканей, включая структуры, характерные для гениталий.

 

Дополнение 2. Некоторые мутации обладают плейотропным действием, т.е. приводят к изменению сразу нескольких признаков.

Пример 1. Ароматические аминокислоты – триптофан, фенилаланин, тирозин – образуются из хоризмовой кислоты. Если некоторая  мутация заблокирует хотя бы один этап синтеза хоризмовой кислоты, то клетка (организм) утрачивает способность к синтезу сразу трех аминокислот.

Пример 2. Один и тот же фермент (трансаминаза) контролирует синтез валина (из α–кетоизовалериановой кислоты) и изолейцина (из α–кето–β–метилвалериановой кислоты). Если некоторая мутация нарушит функции этого фермента, то клетка (организм) утрачивает способность к синтезу сразу двух аминокислот.

Пример 3. Один и тот же полипептид (продукт экспрессии одного гена) может входить в состав разных ферментов. Например, белок-апофермент липоатдегидрогеназы кишечной палочки в качестве субъединицы входит в состав других ферментов: пируватдегидрогеназы, 2-оксоглутаратдегидрогеназы, глицинового расщепляющего комплекса. Тогда мутация в гене LDH скажется на активности всех перечисленных ферментов.
Дополнение 3. Мутация в одном гене может подавлять мутации, происходящие в других (неаллельных) генах. Это явление называется межгенной супрессией.
^ Методы выявления генных мутаций

 

Сложность выявления генных мутаций связана, во-первых, с рецессивностью большинства мутаций (вероятность их фенотипического проявления ничтожно мала), а во вторых с летальностью многих из них (мутанты не выживают).

Все множество методов выявления генных мутаций можно разделить на две группы: методы генетического анализа и биохимические методы.

 

1. ^ Методы генетического анализа основаны на скрещивании возможных носителей мутации с тестерными линиями (линиями-анализаторами). Самый простой метод – это скрещивание носителей предполагаемой мутации с соответствующей рецессивно-гомозиготной линией, т.е. обычное анализирующее скрещивание.

Однако этот метод не позволяет выявить неизвестные мутации, а также летальные мутации. Поэтому создаются специальные тестерные линии для учета летальных мутаций.

 

Например, у мушки дрозофилы синтезирована тестерная линия ^ М–5 (Мёллер–5), которая характеризуется особой структурой X–хромосом у самок. В этих хромосомах имеются аллели с определенным фенотипическим  проявлением (доминантный аллель B – полосковидные глаза; рецессивный аллель wa – абрикосовые глаза; кроме того, имеется еще один аллель – sc, контролирующий отсутствие щетинок, но он в анализе обычно не учитывается). В хромосомах М–5 изменен порядок генов: имеется одна большая инверсия и одна малая, расположенная внутри большой (инверсии будут рассмотрены ниже); такое строение хромосом исключает появление кроссоверных особей при скрещивании мушек М–5 с другими линиями.

Для выявления мутаций используются самцы дикого типа – с нормальными X–хромосомами (аллели В+ и w+ – нормальные красные глаза, sc+  – нормальные щетинки; нормальный порядок генов). Эти самцы подвергаются обработке мутагенами (факторами, повышающими частоту мутаций). В результате в их половых клетках часть X–хромосом мутирует, т.е. в них возникают мутации. Обработанные самцы скрещиваются с самками М–5. В первом поколении (F1) все самки имеют полосковидные темно-красные глаза, а самцы – абрикосовые полосковидные глаза. Кроме того, часть самок получает от отцов по нормальный X–хромосоме, а часть – по мутантной X–хромосоме. Все самцы получают от матерей М–5 только немутантные хромосомы с аллелями В и wa. В F1 рецессивные мутации у самок, даже если они есть, не дают летального эффекта, поскольку они находятся в гетерозиготном состоянии: мутантная X–хромосома дикого типа от отца сочетается с немутантной М–5–хромосомой от матери. 

Затем гибриды первого поколения скрещиваются между собой, и потомство каждой самки выращивается отдельно. Часть самок несет немутантную X–хромосому дикого типа, и в их потомстве обнаруживаются немутантные самцы дикого типа. Однако некоторая часть самок несет мутантную X–хромосому дикого типа с летальной мутацией; соответственно их сыновья, получившие такие хромосомы, не выживают, и самцы дикого типа в потомстве самок–носительниц не обнаруживаются.

Ниже приведены схемы скрещивания, иллюстрирующие принцип использования метода Мёллер–5 (символом l обозначены летальные мутации).

 

Р:

wa B // wa B

×

w+ B+ // Y

– обработка самцов

 

абрикосовые полосковидные

красные нормальные

– окраска и форма глаз

GP:

wa B

 

w+ B+

– немутантная X –хромосома

 

 

 

w+ B+ l

– мутантная X –хромосома

 

 

 

Y

Y–хромосома

 

F1:

w+ B+ // wa B

w+ B+ l // wa B

wa B // Y

 

красные полосковидные глаза; без летальных мутаций

красные полосковидные глаза; носители летальных мутаций

абрикосовые полосковидные глаза

 

1 вариант скрещивания – без летальных мутаций

 

F1:

w+ B+ // wa B

×

wa B // Y

 

 

 

красные полосковидные глаза

 

абрикосовые полосковидные глаза

 

 

G1:

w+ B+

 

wa B

 

 

 

wa B

 

Y

 

 

F2:

w+ B+ // wa B

wa B // wa B

w+ B+ // Y

wa B // Y

 

красные полосковидные глаза

абрикосовые полосковидные глаза

красные нормальные глаза

абрикосовые полосковидные глаза

 

 

 

 

 

 

 

 

 

 

2 вариант скрещивания – при наличии летальных мутаций

 

F1:

w+ B+ l // wa B

×

wa B // Y

 

 

красные полосковидные глаза

 

абрикосовые полосковидные глаза

 

G1:

w+ B+ l

 

wa B

 

 

wa B

 

Y

 

 

F2:

w+ B+ l // wa B

wa B // wa B

w+ B+ l // Y

wa B // Y

 

красные полосковидные глаза

абрикосовые полосковидные глаза

самцы не обнаруживаются (летали)

абрикосовые полосковидные глаза

 

В настоящее время, кроме тестерной линии ^ М–5 используются и другие тестерные лини мушек дрозофил и других модельных объектов. Например, существуют тест-системы, позволяющие выявлять мутации X-хромосомах самцов в первом же поколении, а также мутации в аутосомах. Применение этих линий позволяет изучать закономерности мутационного процесса, однако классический генетический анализ далеко не всегда можно использовать для выявления мутаций в популяциях человека и многих других организмов.

2. ^ Биохимические методы выявления мутаций исключительно разнообразны и основаны на применении различных методик.

а). Методики, основанные на выявлении определенных биохимических продуктов мутантных генов. Легче всего выявлять мутации по изменению активности ферментов или по утрате какого-либо биохимического признака. Например, у микроорганизмов на селективных питательных средах выявляются ауксотрофные формы, не способные синтезировать определенные вещества (по сравнению с нормальными, прототрофными формами).

б).  Методики, основанные на непосредственном выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза в сочетании с другими методиками (блот-гибридизации, авторадиографии).

 

^ 4. Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций
Причины возникновения мутаций

По причинам возникновения различают спонтанные и индуцированные мутации.
Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р: процессов репликации, репарации и рекомбинации ДНК. Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.

В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.
Индуцированные мутации возникают под действием мутагенов.

Мутагены – это разнообразные факторы, которые повышают частоту мутаций.

Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.

Различают несколько классов мутагенов:

–  ^ Физические мутагены: ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.

–  Химические мутагены: аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.

–  ^ Биологические мутагены: чистая ДНК, вирусы, антивирусные вакцины.

–  Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.
1   ...   4   5   6   7   8   9   10   11   ...   39

Похожие:

Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconЭкзаменационные вопросы по биологии с экологией для студентов первого...
Данный файл является в большей степени компиляцией большинства источников информации, регулярно используемых на курсе биологии, чем...
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconЭкзаменационные вопросы по мобилизационной подготовке и медицине...
Общая характеристика чрезвычайных ситуаций мирного времени: определение основных понятий и классификация чрезвычайных ситуаций
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconБилеты
Для студентов лечебного, педиатрического, медико-профилактического и иностранного факультетов
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconКомпьютерные тесты и экзаменационные вопросы по гистологии, цитологии...
Оно поможет студентам самостоятельно проверить свои знания по предмету во время сдачи итоговых занятий и лучше подготовиться к компьютерному...
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconПособие для студентов лечебного, педиатрического, медико-психологического...
Фармакология в вопросах и ответах: пособие для студентов лечебного, педиатрического, медико-психологического факультетов и факультета...
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconСитуационные задачи для лечебного, педиатрического и медико-профилактического...
...
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconВопросы для сдачи экзамена по акушерству и гинекологии для студентов...

Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconКонтрольные вопросы для самоподготовки к практическим и лабораторным...
Белок как молекулярная основа живой материи. Роль белков в процессах жизнедеятельности
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconМетодические указания для студентов вечернего и дневного отделений...
Методические указания для студентов вечернего и дневного отделений педиатрического
Экзаменационные вопросы по биологии с экологией для студентов первого курса лечебного, педиатрического, медико-профилактического факультета и мимос   iconКонтрольные вопросы к итоговым занятиям для студентов лечебного,...
История изучения белков. Теория строения белков Мульдера. Пеп­тидная теория строения белков
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница