Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу


Скачать 378.56 Kb.
НазваниеСвободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу
страница1/4
Дата публикации12.04.2013
Размер378.56 Kb.
ТипДокументы
userdocs.ru > Математика > Документы
  1   2   3   4
Билет 14.
Вопрос 2.

Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу.
Среди различных процессов втречаются периодически повторяющиеся (колебания). Колебательный процесс может возникнуть за счёт внешней силы, которая вывела систему из равнвесия и перестала действовать, а колебания происходят под действием только внутренних сил, без участия внешних. Такие колебания наз. собственными. Колебания с одной степенью свободы – это колебания при которых движения системы можно описать одним независимым параметром (координатой). Пример: колебания математического маятника, колебания физического маятника (твёрдое тело, подвешенное за точку и способное колебаться вокруг оси, не проходящей через ц. м.), колебания груза на пружинке.

Уравнения для физического маятника: J=–mgasin–mga, приведённая длинна физического маятника, равна длинне математического маятника с тем же периодом – l=J0+ma2/ma. T=, решение этого уравнения: =0cos(t+), 0,  определяются начальными условиями,  – параметр системы. Колебания происходящие по закону sinуса или cosинуса наз. гармоническими.

^ Сложение гармонических колебаний одинаковой частоты. x1=A1cos(t+1), x2=A2cos(t+2). Представим в комплексной форме: x=x1+x2=A1ei(t+1)+ A2ei(t+2)=eit(A1ei1+A2ei2), A1ei1+A2ei2=Aei, A2=A12+A22+2 A1A2cos(12,), tg =(A1sin1+A2sin2)/(A1cos1+A2cos2) x=x1+x2=Aei(t+) x=Acos( t–).

Сложения гармонических колебаний с близкими частотами. x1=A1cos(1t+1), x2=A2cos(2t+2). Каждое из колебаний представим в комплексной форме, а сложение будем производить векторно. Пусть A1>A2. Cуммой двух колебаний с близкими частотами является колебание с изменяющейся амплитудой (от А1–А2 до А12) и с частотой |1–2|. Колебания амплитуды с частотой =|1–2| называются с биениями, а частота  – частотой биения.

^ Фигуры Лиссажу.

Билет 15.

Вопрос 1.

Уравнение движения в релятивистской меканике. Импульс и энергия. Энергия покоя.
Уравнение движения в релятивистской механике

Полную силу F , действующую на частицу, можно разложить на тангенциальную и нормальную компоненты:



Каждая из компонент силы создает в соответствующем направлении ускорение, которое определяется инертностью тела в этом направлении

;

Если ввести единичные векторы: и , то эти уравнения можно записать в виде:





Левую часть этого уравнения можно упростить.

Принимая во внимание, что:, и представляя формулу:

в виде заменим на

, прямым дифференцированием проверяем равенство , с помощью которого левую часть упрощаемого уравнения преобразуем к виду:



, где -скорость частицы.
Таким образом, уравнение движения в релятивистской механике:

, или - релятивистский импульс.

Импульс материальной точки – вектор, равный произведению массы точки на ее скорость:

Энергия покоя

получается из при

Вопрос 2.

^ Затухающие колебания. Показатель (коэффициэнт) затухания, логарифмический декремент, добротность.
Затухающие колебания. Воспользуемся наиболее простым случаем «жидкого» или «вязкого» трения, когда сила трения направлениа противоположно скорости и пропорциональна скорости. Колебания при наличии трения становятся затухающими:

. - коэффициент трения,



Решение этого уравнения удобно искать в виде

. Учитывая, что ,

, находим



Решение этого уравфнения:, где

, (*)



При не очень больших

- вещественная величина и

- гармоническая функция

Вещественная часть колебания, описываемого равенством (*), представляется формулой:



Отсюда видно, что амплитуда колебаний уменьшается
в е=2,7 раза в течение времени

-время затухания, а - показатель (коэффициент, декремент) затухания.

Всё выше написанное относится к случаю не очень больщих коэффициентов трения и когда  – действительное число.

Логарифмический декремент

, ,

- логарифмический декремент



Другая интерпретация:



Приамплитуда уменьшается в е раз, поэтому
Добротность. Q=Aрезст=0/2=2/2T=/, т. к. рез2=02+22.

Билет 16.

Вопрос 1.

Кинематика твёрдого тела. Углы Эйлера. Поступательное, плоское и вращательное движения тела.
К
инематика твердого тела


(Абсолютно) твердое тело – это система материальных точек, относительные положения которых остаются неизменными, то есть все макроскопические элементы такого тела неподвижны в системе координат жестко связанной с телом

Задача кинематики твердого тела – дать способы описания движения твердого тела и, исходя из закона его движения , определить положение , скорость и ускорение любой точки тела в любой момент времени.

Углы Эйлера

Число степеней свободы – это число независимых величин, которые необходимо задать для того, чтобы однозначно определить положение тела в пространстве.

Для того, что однозначно задать положение твердого тела в пространстве, надо зафиксировать три его точки, не лежащие на одной прямой. Одна материальная точка имеет три степени свободы (X,Y,Z). Две : 3+3-1=5 степеней. В этом случае координаты точек X1,Y1,Z1 и X2,Y2,Z2 не являются независимыми величинами, так как имеется уравнение связи

L2=(X2-X1)2+(Y2-Y1)2+(Z2-Z1)2 , Где L – расстояние между точками

Таким образом, в общем случае для твердого тела получаем 3+3+3-3=6 степеней свободы.

Зададим три различные декартовы системы координат:

1.Лабораторная X Y Z

2.Система X0,Y0,Z0, начало которой связано с некоторой точкой О твердого тела, а оси остаются параллельными осям лабораторной системы X Y Z, т.е. она движется поступательно.

3.Система x y z, начало которой находится в той же точке О, что и начало x0 y0 z0, а оси жестко связаны с твердым телом.

Тогда шести степеням свободы твердого тела будут соответствовать три координаты точки ОX Y Z) и три угла φ, ψ, Θ, однозначно определяющие положение системы x y z относительно x0 y0 z0 - углы Эйлера

φ – угол собственного вращения (поворот вокруг оси Z),

ψ – угол прецессии (поворот вокруг Z0 с сохранением угла Θ между осями Z0 и Z),

Θ – угол нутации (отклонение тела от оси Z0)

П
оступательное движение


Поступательное движение – это такое движение, при котором любой выделенный в теле отрезок остается параллельным самому себе (движение кабинок «колеса обозрения»).

Допустим, закон движения точки А задан в виде

Т
огда закон движения точки В будет иметь вид

Г
де rAB – вектор проведенный от точки А к точке В

Скорость точки А VA=drA/dt

Скорость точки В VB=drB/dt=VA, т.к. rAB=const

Ускорение: aA=dVA/dt=dVB/dt=aB

Вращательное движение

Вращательное движение – это такое, при котором две точки тела остаются все время неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все точки твердого тела, лежащие на оси вращения, неподвижны. Другие точки движутся по окружностям в плоскостях, перпендикулярных оси вращения.

Угловое перемещение всех точек твердого тела за одно и тоже время будут одинаковыми.

Угловая скорость:

Вектор элементарного углового перемещения Δφ направлен вдоль оси вращения в соответствии с правилом буравчика. Вектор угловой скорости ω=dφ/dt определяет модуль угловой скорости, ориентацию оси вращения в пространстве и направление вращения тела.

Вектор скорости VA: VA=ω×rA (формула Эйлера)

VA= ω rA*sinα=ωρ

Ускорение точки А:

aA=d ω/dt×rA+ ω×drA/dt=ε×rA+ω×VA

- угловое ускорение тела

aA=a+an - все три вектора лежат в плоскости, перпендикулярной оси вращения

a=×rA=*ρ* - тангенциальное ускорение ( - единичный вектор в направлении VA).

an= ω× VA= ω×( ω× rA)= ω2n – центростремительное ускорение (n – единичный вектор в направлении к оси вращения)

Плоское движение

Плоское движение – это такое движение твердого тела, при котором траектории всех его точек лежат в неподвижных параллельных плоскостях.

Скорость любой точки ^ А тела геометрически складывается из скорости какой-либо другой точки О, принятой за полюс, и скорости вращательного движения вокруг этого полюса.

Радиус-вектор точки А:

rA=r0+r` , r` - вектор, проведенный из полюса в точку А.

Скорость точки А:

VA= drA/dt= dr0/dt+ dr`/dt=V0+ ω× r`

Отсюда можно сделать вывод, что в любой момент времени должна существовать такая точка ^ М, скорость которой в лабораторной системе X Y Z равна нулю – для этой точки

V0= -ω×r`

Причем точка может находиться и вне тела.

Таким образом, плоское движение твердого тела в данный момент времени можно представить как чистое вращение вокруг оси, проходящей через эту точку М - мгновенной оси вращения.

Ускорение точки А:

aA=dVA/dt=dV0/dt+dω/dt×r`+ω× dr`/dt=a0+a+an

a=×r`

an= ω× dr`/dt=ω×(ω×r`)=ω*(ω*r`)-r`(ω*ω)=- ω2*r`

((ω*r`)=0, т.к. ωr`)
Вопрос 2.

Вынужденные колебания под действием гармонической внешней силы. Процесс установления колебаний. Амплитудно-частотные и фазо-частотные кривые. Резонанс.
^ Вынужденные колебания под действием гармонической внешней силы. Если на систему постоянно действует постоянно меняющаяся внешняя, зависящая от времени сила, то такие колебания наз. вынужденными.

mx``=-Dx-x`+F0cost

x``+2x`+02x=(F0/m)cost

^ Процесс установления колебаний

Каковы бы ни были условия в момент начала действия внешней силы, осциллятор будет совершать одни и те же установившиеся гармонические колебания. Процесс установления колебаний называется переходным режимом. Он происходит потому, что с течением времени затухнут собственные колебания. Время установления колебаний определяется временем затухания колебаний, которые имелись в момент начала действия силы -  = 1/. Даже если начальных колебаний не было, то все равно время установления будет тем же.

a) малые частоты: 0, 0А=(F0/m)sint, A(t)=( F0/m 02)sint =( F0/k) sint

б) большие частоты: 0, Ä(F0/m)sint, А=(F0/m2)sin(t-)

в) резонанс: 0: Рассмотрим подробнее именно этот режим. С этой целью пе­репишем уравнение в комплексном виде:

(12.29)

а его частное решение будем искать в виде

(t)=A. (12.30)

Реальная часть этого решения будет решением уравнения (12.27)(вместо в 12.29. cos wt) Подставляя (12.30) в (12.29), получаем



Из условия стационарности решения (независимости его от вре­мени) следует, что =, откуда



A есть комплексное число, которое удобно представить в экспоненциальном виде A=x+iY=Ao. Тогда модуль А будет Aо=, а его фаза tg=Y/X. .Получаем

, tg  = (2)/(02-2).
^ АЧХ и ФЧХ. Резонанс.

АЧХ-кривая,описывающая зависимость амплитуды вынужденных установившихся колебаний от частоты внешней силы.

ФЧХ-то же для разности фаз вынужденных колебаний и внешней силы. резонанс: 0

А=А0sin(0t+)

Ä+02A=0

2Á=(F0/m)sin0t

A=(F0/2m0)sin(t-/2)

A0=F0/2m0=( F0/m02)*(0/2)=(F0/k)*Q



tg  = (2)/(02-2)

(0-)/  1
(02-2)2 = (0-)2*(0+)2 ; 0+ ≈ 2ω ; 4γ2ω2 ≈ 4γ2ω02

– Формула Лоренца

∆ω = 2δ=ω0/Q - ширина резонансной кривой.

 — дектремент затухания.

(ω02-2)1/2.
Билет 17.

Вопрос 1.

Движение тела с одной закреплённой точкой. Регулярная прецессия свободного симметричного волчка.
^ Движение твердого тела с одной неподвижной точкой. В этом случае тело имеет три степени свободы – начала систем XYZ и x 0 y 0 z 0 , введенных в начале лекции, можно совместить с точкой закрепления, а для описания движения тела использовать три угла Эйлера: =(t), =(t), =(t).

Для твердого тела с одной неподвижной точкой справедлива теорема Эйлера: твердое тело, закрепленное в одной точке, может быть переведено из одного положения в любое другое одним поворотом на некотjрый угол вокруг неподвижной оси, проходящей через точку закрепления. Cледствие из этой теоремы: движение закрепленного в точке твердого тела в каждый момент времени можно рассматривать как вращение вокруг мгновенной оси, проходящей через точку закрепления. Положение этой оси как в пространстве, так и относительно самого тела с течением времени общем случае меняется. Г М положений мгновенной оси вращения относительно неподвижной системы XYZ (или x 0 y 0 z 0 ) – это сложная коническая поверхность с вершиной в точке закрепления. В теоретической механике ее называют неподвижным аксоидом. Г М положений мгновенной оси вращения относительно подвижной системы xyz, жестко связанной с твердым телом, – это тоже коническая поверхность – подвижный аксоид. Линейная скорость произвольной точки твердого тела вокруг мгновенной оси: v=r, где r – радиус-вектор точки относительно начала системы XYZ (или x 0 y 0 z 0 ), совмещенного с точкой закрепления.

Э


ти уравнения наз. уравнениями Эйлера. В ряде случаев движение с одной закр. точкой можно представить как суперпозицию 2-х вращений вокруг пересекающихся осей, угловые скорости складываются векторно.

^ Регулярная прецессия свободного симметричного волчка. Рассмотрим тяжелый симметричный гироскоп, у которого неподвижная точка S (точка опоры о подставку) не совпадает с центром масс О (рис. 4.6). Момент силы тяжести относительно точки S: M=mglsin. Изменение момента импульса L определяется выражением: dL=Mdt. При этом и L, и ось волчка прецессируют вокруг вертикального направления с угловой скоростью . Еще раз подчеркнем: делается допущение, что выполнено условие >> и что L постоянно направлен вдоль оси симметрии гироскопа.

dL=L sindt, dL=L dt  M= dL=L.

Это соотношение позволяет определить направление прецессии при заданном направлении вращения волчка вокруг своей оси. Обратим внимание, что M определяет угловую скорость прецессии, а не угловое ускорение, поэтому мгновенное «выключение» M приводит к мгновенному же исчезновению прецессии, то есть прецессионное движение является безынерционным.

mglsin=Jz sin  =mgl/Jz

Билет 18.

Вопрос 1.

Момент импульса твёрдого тела относительно оси. Момент инерции относительно оси. Теорема Штейнера. Примеры вычисления осевых моментов инерции.
Уравнение моментов. Момент инерции относительно закрепленной оси. Рассмотрим твердое тело как систему жестко связанных между собой материальных точек. Уравнение движения для i-й материальной точки массы m, в лабораторной системе координат имеет вид:



где F. сумма всех внешних сил, действующих на i-ю материальную точку, f — сила, действующая на i-ю материальную точку со стороны j-й материальной точки, т.е. внутренняя сила. Будем полагать, что силы взаимодействия являются центральными, то есть векторы и коллинеарны.

Умножим обе части уравнения движения (В.6) векторно на радиус-век­тор



С учетом того, что

(так kак ,то), после суммирования по всем точкам системы получим



Величина импульс i-й материаль-

ной точки) называется моментом импульса системы относительно некото­рой неподвижной точки, выбранной за начало координат;

момент внешних сил относительно той же точки; величина является моментом всех внутренних сил. Выражение для момента внутренних сил можно преобразовать:



Заметим, что для центральных сил . Тогда с

учетом введенных выше обозначений уравнение (В.8) записывается в

следующем виде:

(B10)

Это уравнение называется уравнением моментов.

Если твердое тело вращается вокруг закрепленной оси, то векторное уравнение (В.10) сведется к скалярному уравнению. В частности, если ось вращения совпадает с осью координат z, то



М проекции L и М на ось г.

При вращении твердого тела вокруг неподвижной оси z с угловой скоростью w скорость каждой материальной точки т, тела будет равна

где l ее расстояние до оси z. Проекции моментов импульса

на ось z для этих точек будут равны Так как w одинакова для всех точек твердого тела, то момент импульса всего тела относительно оси z равен

Величину (B13)

называют моментом инерции тела относительно закрепленной оси. Момент инерции является мерой инертности тела при вращательном движении относительно закрепленной оси.

получаем основное уравнение вращатель­ного движения тела вокруг закрепленной оси z:



При непрерывном распределении массы по объему для вычисления момента инерции пользуются не суммированием, а интегрированием по всему объему тела и тогда (В. 13) приводится к следующему виду:

Если удалось определить момент инерции jo относительно некоторой оси, проходящей через центр масс — точку с радиусом-вектором

(mмасса точки тела, r— ее радиус-вектор), то в

соответствии с теоремой ГюйгенсаШтейнера момент инерции тела / относительно любой другой оси, параллельной первоначальной и находя­щейся на расстоянии а от нее, равен

(В. 17) где т масса тела.
Теорема Гюнгенса-Штейнера. Вычисление мо­ментов инерции относительно оси во многих случаях облегчает теорема Гюйгенса, связывающая моменты инерции относительно двух параллель­ных осей, одна- из которых проходит через центр масс тела . Ось АоВо пусть будет осью, проходя­щей через центр масс. Радиус-вектор точки с массой m отсчитываемый от этой оси в плоскости, перпендикуляр­ной оси, обозначим R„ а от оси АВ, параллельной оси АоВо, но не проходя­щей через центр масс, r . Проведем от оси АоВо к оси АВ в этой плос­кости вектор а. Пусть Jо — момент инерции относительно оси, проходящей через центр масс, a J относительно оси АВ, не проходящей через центр масс. По определению моментов инер­ции имеем

(32.11)

Видно, что r = -a+R; и, следовательно, Поэтому получаем

(32.12)

Учтем, что =0 по определению оси, проходящей через центр масс, а =m—масса тела.

Поэтому (32.12) принимает вид



^ Моменты инерции параллелепипеда со сторонами а, b и с относительно его главных осей. Выберем оси системы координат (х, у, z) совпадающими с главными центральными осями. Начало системы координат совпадает с центром параллелепипеда. Для определения мо­мента инерции относительно оси Ох представим параллелепипед как совокупность тонких прямоу­гольных пластинок массой dm = dy и толщиной dy. Момент инерции каждой такой

пластинки относительно оси Ох в соответствии с теоремой Гюйгенса—Штейнера равен

Момент инерции всего параллелепипеда по­лучим, интегрируя по всему объему Аналогично вычисляются моменты инерции относительно осей у и х:




Вопрос 2.

Работа внешней гармонической силы при вынужденных колебаниях. Автоколебания. Параметрические колебания. Примеры.

Параметрические и автоколеьания. Пример. Работа внешней силы.

Работа за период: Aпер.=(F022T)/((20-2)+422)

Из-за потери энергии на трение собственные колебания постепенно затухают. Если к осциллятору подводить энергию от источника внешней гармонической силы, -то он начнет колебаться с частотой этой силы, кото­рая вообще говоря, отличается от собственной частоты осциллятора.

Однако можно создать устройства, в которых осциллятор сам регулирует подвод энергии из внешнего источника таким образом, чтобы компенсировать потери энергии на трение. За период колебаний из внешнего источника энергия, приобретаемая осциллятором, равна энергии, затрачиваемой на пре­одоление сил трения. В результате осциллятор совершает незатухающие колебания. Такие самоподдерживающиеся колебания называются автококлебаниями. Если трение невелико, то за один период в систему поступает лишь небольшая доля полной энергии осциллятора. В этом случае автоколебания с очень большой точностью являются гармоническими и их частота очень близка к частоте собственных колебаний. Если же силы трения ве­лики, то за один период в систему подводится значительная часть полной энергии осциллятора и поэтому колеба­ния сильно отличаются от гармониче­ских, хотя и являются периодическими. Период этих колебаний не совпадает с периодом собственных колебаний осциллятора.

^ Автоколебания маятника. Рассмотрим колебания маятника, подвешенного на оси во вращающейся втулке (Матвеев рис. 156 305 стр), и превращение его энергии в различных случаях. Вращающаяся втулка в результате скольжения относительно оси совершает работу на преодоление сил трения. Источником энергии, превращенной во внутреннюю, является машина, приводящая во вращение втулку. В тот полупериод колебаний маятника, когда направления вращения оси маятника и втулки совпадают, силы трения совпадают по направлению с движением точек поверхности оси. Поэтому эти силы вызывают усиление колебаний маятника. С другой стороны, энергия, превратившаяся во внутреннюю, за вр­мя полупериода колебаний в сравнении со случаем покоящегося маятника уменьшаетс, я ввиду того, что относительное перемещение трущихся поверхностей (внешняя поверхность оси и внутренняя поверхность втулки) уменьшается. Поэтому лишь часть энергии от машины, вращающей втулку, превращается во внутреннюю, а другая часть идет на увеличение энергии колебаний маятника. В другой полупериод колебаний маятника, когда направления вращения его оси и оси втулки противоположны, силы трения действуют против направ­ления движения маятника. Поэтому они тормозят его движение и энергия колебаний маятника превращается во внутреннюю. Энергия от машины, вращающей втулку, в этом случае также полностью превращается во внутреннюю. Полный результат превращений энергии в течение периода колебаний определяется характером зависимости сил трения от скорости. Если силы трения не зависят от скорости, то энергия, приобретаемая маятником в полупериоде колебаний, когда направления вращения его оси и вала совпадают, равна энергии, теряемой им на работу против сил трения в другом полупериоде. В этом случае вращение втулки не вносит каких-либо изменений в колебания маятника в сравнении со случаем невращающейся втулки. Если сила трения увеличивается с возрастанием скорости, то энергия, приобретаемая маятником за полупериод колебаний, когда направления враще­ния его оси и вала совпадают, меньше энергии, теряемой им на работу против сил трения в другом полупериоде, по­скольку во втором полупериоде относи­тельные скорости больше, а следова­тельно, и силы трения больше, чем в первом полупериоде. В этом случае вращение втулки увеличивает затуха­ние колебаний маятника.

^ Параметрическое возбуждение колебаний. Свойства колеблющихся систем описываются величинами, называемыми параметрами. Например, математи­ческий маятник характеризуется одним параметром — его длиной. При измене­нии этого параметра изменяются коле­бательные свойства маятника, а именно частота собственных колебаний. Если этот параметр изменять в определенном такте с колебаниями, то можно сооб­щить маятнику энергию и тем самым увеличить амплитуду его колебаний либо просто поддерживать колебания в незатухающем режиме. Такое возбуждение и поддержание колебаний назы­вается параметрическим.

Хорошо известным примером пара­метрического возбуждения и поддержи­вания колебаний является качание на качелях. Когда качели находятся в верхней точке, качающийся на них при­седает, а когда качели проходят нижнюю точку, он снова выпрямляется. В результате приседания в верхних точ­ках совершается меньшая по модулю работа, чем работа при подъеме в нижней точке. Разность работ, по зако­ну сохранения, равна разности энергий качаний, и качели раскачиваются. Если эта энергия затрачивается полностью на работу силы трения, то качания поддерживаются в незатухающем режиме.




Билет 19.
  1   2   3   4

Похожие:

Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconТеоретические основы физической акустики глава звуковые колебания и волны
Если источник возмущения известен, то пространство, в котором могут быть обнаружены звуковые колебания, создаваемые этим источником,...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconСписок вопросов к экзамену 3
Свободные механические и электрические колебания дифференциальное уравнение свободных колебаний и его решения
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconВынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением…
Свободные незатухающие колебания заряда конденсатора в колебательном контуре описывается уравнением…
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconТема: Механические колебания и волны
Дано уравнение колебательного движения х=0,45 sin 5П в см. Определить амплитуду, период колебаний и смещение при t=0,1 с
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconИтоговая работа (1) -конец октября
Колебания синтаксической нормы в современной русской художественной литературе, публицистике, разговорной речи ( студенты описывают...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconСвободные изгибно-продольные колебания ракеты-носителя с космическим аппаратом
Целью работы является определение вибраций в переходном отсеке между рн и космической головной частью, которые будут внешними воздействиями...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу icon: (1) Результирующая напряженность е является векторной суммой напряженностей...
Поляризованным называется свет, в котором направления колебаний светового вектора упорядочены каким-либо образом. В естественном...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconОнтогенетические колебания биологического времени растений: яровые и озимые формы
Льные, оптимальные и максимальные значения факторов внешней среды: прихода фар, температуры воздуха, влажности почвы. Основное различие...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconМетодические указания к проведению теста
Одной фигуры не достает, а внизу она дается среди 6-8 других фигур. Задача испытуемого установить закономерность, связывающую между...
Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу iconМетодические указания к проведению теста
Одной фигуры недостает, а внизу она дается среди 6-8 других фигур. Задача испытуемого установить закономерность, связывающую между...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница