Основы нейропсихологии


НазваниеОсновы нейропсихологии
страница1/20
Дата публикации08.07.2013
Размер3.6 Mb.
ТипУчебное пособие
userdocs.ru > Психология > Учебное пособие
  1   2   3   4   5   6   7   8   9   ...   20
Александр Романович Лурия

ОСНОВЫ НЕЙРОПСИХОЛОГИИ
Учебное пособие

Серия: Классическая учебная книга
Издательство: Академия
2006 г.

Эта книга, издаваемая к 100-летию со дня рождения А. Р. Лурия, предназначена для студентов в качестве учебного пособия еще самим автором. Она построена как учебный курс, в котором кратко излагается содержание нейропсихологии как учебной дисциплины. Автор подробно анализирует психологическую структуру и мозговые механизмы отдельных психических процессов - восприятия, произвольных движений и действий, внимания, памяти, речи, мышления. Раскрывает популярную сегодня среди нейропсихологов и клиницистов модель трех основных блоков мозга, в которой реализованы представления автора о целостном характере деятельности мозга при осуществлении психических процессов и об основных типах их нарушений.


^ Часть первая. ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ МОЗГА И ПСИХИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ (ОСНОВНЫЕ ПРИНЦИПЫ)

ВВЕДЕНИЕ

Глава I. ТРИ ИСТОЧНИКА ЗНАНИЙ О ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ МОЗГА

^ 1. СРАВНИТЕЛЬНО-АНАТОМИЧЕСКИЕ ДАННЫЕ

2. ФИЗИОЛОГИЧЕСКИЕ ДАННЫЕ: МЕТОД РАЗДРАЖЕНИЯ

3. ФИЗИОЛОГИЧЕСКИЕ ДАННЫЕ: МЕТОД РАЗРУШЕНИЯ
Глава II. ЛОКАЛЬНЫЕ ПОРАЖЕНИЯ МОЗГА И ОСНОВНЫЕ ПРИНЦИПЫ ЛОКАЛИЗАЦИИ ФУНКЦИЙ

^ 1. РАННИЕ РЕШЕНИЯ

2. КРИЗИС

3. ПЕРЕСМОТР ОСНОВНЫХ ПОНЯТИЙ

4. СИНДРОМНЫЙ АНАЛИЗ И СИСТЕМНАЯ ОРГАНИЗАЦИЯ ПСИХИЧЕСКИХ ПРОЦЕССОВ
Глава III. ТРИ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ БЛОКА МОЗГА

^ 1. БЛОК РЕГУЛЯЦИИ ТОНУСА И БОДРСТВОВАНИЯ

2. БЛОК ПРИЕМА, ПЕРЕРАБОТКИ И ХРАНЕНИЯ ИНФОРМАЦИИ

3. БЛОК ПРОГРАММИРОВАНИЯ, РЕГУЛЯЦИИ И КОНТРОЛЯ СЛОЖНЫХ ФОРМ ДЕЯТЕЛЬНОСТИ

^ 4. ВЗАИМОДЕЙСТВИЕ ТРЕХ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ БЛОКОВ МОЗГА
Часть вторая. ЛОКАЛЬНЫЕ СИСТЕМЫ МОЗГА И ИХ ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

ВСТУПИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Глава I. ЗАТЫЛОЧНЫЕ ОТДЕЛЫ МОЗГА И ОРГАНИЗАЦИЯ ЗРИТЕЛЬНОГО ВОСПРИЯТИЯ

^ 1. ПЕРВИЧНЫЕ ЗОНЫ ЗАТЫЛОЧНОЙ КОРЫ И ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ ЗРЕНИЯ

2. ВТОРИЧНЫЕ ОТДЕЛЫ ЗАТЫЛОЧНОЙ КОРЫ И ОПТИКО-ГНОСТИЧЕСКИЕ ФУНКЦИИ
Глава II. ВИСОЧНЫЕ ОТДЕЛЫ МОЗГА И ОРГАНИЗАЦИЯ СЛУХОВОГО ВОСПРИЯТИЯ

^ 1. ПЕРВИЧНЫЕ ЗОНЫ ВИСОЧНОЙ КОРЫ И ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ СЛУХА

2. ВТОРИЧНЫЕ ОТДЕЛЫ ВИСОЧНОЙ КОРЫ И АКУСТИКО-ГНОСТИЧЕСКИЕ ФУНКЦИИ

^ 3. СИСТЕМНОЕ ВЛИЯНИЕ НАРУШЕНИЙ РЕЧЕВОГО СЛУХА НА ДРУГИЕ ПСИХИЧЕСКИЕ ПРОЦЕССЫ

4. ВАРИАНТЫ «ВИСОЧНОГО СИНДРОМА»

Глава III. ТРЕТИЧНЫЕ ЗОНЫ КОРЫ И ОРГАНИЗАЦИЯ СИМУЛЬТАННЫХ СИНТЕЗОВ

^ 1. ТРЕТИЧНЫЕ ЗОНЫ КОРЫ И ОРГАНИЗАЦИЯ НАГЛЯДНЫХ ПРОСТРАНСТВЕННЫХ СИНТЕЗОВ

2. ТРЕТИЧНЫЕ ЗОНЫ КОРЫ И ОРГАНИЗАЦИЯ СИМВОЛИЧЕСКИХ (КВАЗИПРОСТРАНСТВЕННЫХ) СИНТЕЗОВ

^ 3. ТРЕТИЧНЫЕ ЗОНЫ КОРЫ И ПРОЦЕССЫ РЕЧЕВОЙ ПАМЯТИ

4. ТЕМЕННО-ЗАТЫЛОЧНЫЕ ЗОНЫ ПРАВОГО (СУБДОМИНАНТНОГО) ПОЛУШАРИЯ И ИХ ФУНКЦИИ
Глава IV. СЕНСОМОТОРНЫЕ И ПРЕМОТОРНЫЕ ОТДЕЛЫ МОЗГА И ОРГАНИЗАЦИЯ ДВИЖЕНИЙ

^ 1. ПОСТЦЕНТРАЛЬНЫЕ ЗОНЫ КОРЫ И АФФЕРЕНТНАЯ ОРГАНИЗАЦИЯ ДВИЖЕНИЙ

2. ПРЕМОТОРНЫЕ ЗОНЫ КОРЫ И ЭФФЕРЕНТНАЯ ОРГАНИЗАЦИЯ ДВИЖЕНИЙ
Глава V. ЛОБНЫЕ ДОЛИ МОЗГА И РЕГУЛЯЦИЯ ПСИХИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

^ 1. ЛОБНЫЕ ДОЛИ И РЕГУЛЯЦИЯ СОСТОЯНИЙ АКТИВНОСТИ

2. ЛОБНЫЕ ДОЛИ И РЕГУЛЯЦИЯ ДВИЖЕНИЙ И ДЕЙСТВИЙ

3. ЛОБНЫЕ ДОЛИ И РЕГУЛЯЦИЯ МНЕСТИЧЕСКИХ И ИНТЕЛЛЕКТУАЛЬНЫХ ДЕЙСТВИЙ

^ 4. ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЛОБНЫХ ДОЛЕЙ И ВАРИАНТЫ ЛОБНОГО СИНДРОМА
Глава VI. МЕДИОБАЗАЛЬНЫЕ ОТДЕЛЫ КОРЫ, ПРАВОЕ ПОЛУШАРИЕ МОЗГА

^ 1. МЕДИАЛЬНЫЕ ОТДЕЛЫ КОРЫ И ИХ РОЛЬ В РЕГУЛЯЦИИ ПСИХИЧЕСКИХ СОСТОЯНИЙ

2. СУБДОМИНАНТНОЕ ПОЛУШАРИЕ И ЕГО РОЛЬ В ОРГАНИЗАЦИИ ПСИХИЧЕСКИХ ПРОЦЕССОВ

Часть третья. ПСИХИЧЕСКИЕ ПРОЦЕССЫ И ИХ МОЗГОВАЯ ОРГАНИЗАЦИЯ

Глава I. ВОСПРИЯТИЕ

^ 1. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ

2. МОЗГОВАЯ ОРГАНИЗАЦИЯ
Глава II. ДВИЖЕНИЕ И ДЕЙСТВИЕ

1. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ

^ 2. МОЗГОВАЯ ОРГАНИЗАЦИЯ
Глава III. ВНИМАНИЕ

1. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ

2. ФИЗИОЛОГИЧЕСКИЕ ИНДИКАТОРЫ ВНИМАНИЯ

^ 3. МОЗГОВАЯ ОРГАНИЗАЦИЯ
Глава IV. ПАМЯТЬ

1. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ

2. МОДАЛЬНО-НЕСПЕЦИФИЧЕСКИЕ ФОРМЫ ПАМЯТИ

^ 3. МОДАЛЬНО-СПЕЦИФИЧЕСКИЕ ФОРМЫ ПАМЯТИ

4. НАРУШЕНИЕ ПАМЯТИ КАК МНЕСТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ
Глава V. РЕЧЬ

1. К ИСТОРИИ ВОПРОСА

^ 2. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ РЕЧЕВОЙ ДЕЯТЕЛЬНОСТИ

3. ИМПРЕССИВНАЯ РЕЧЬ

4. ЭКСПРЕССИВНАЯ РЕЧЬ
Глава VI. МЫШЛЕНИЕ

^ 1. ПСИХОЛОГИЧЕСКОЕ СТРОЕНИЕ

2. НАГЛЯДНОЕ (КОНСТРУКТИВНОЕ) МЫШЛЕНИЕ

3. ВЕРБАЛЬНО-ЛОГИЧЕСКОЕ (ДИСКУРСИВНОЕ) МЫШЛЕНИЕ. РЕШЕНИЕ ЗАДАЧ

ЗАКЛЮЧЕНИЕ
Часть первая
^ ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ МОЗГА И ПСИХИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ
(ОСНОВНЫЕ ПРИНЦИПЫ)


ВВЕДЕНИЕ

Мозг как орган психической деятельности в настоящее время стал средоточием научных интересов ряда дисциплин.

Как построен мозг человека, этот совершенный прибор, позволяющий осуществлять сложнейшие формы отражения действительности, и какова его функциональная организация? Какие аппараты мозга обеспечивают возникновение специфических потребностей и намерений, отличающих человека от животного? Как организованы нервные процессы, связанные с получением, переработкой и хранением информации, поступающей из внешнего мира? Чем обеспечиваются программирование, регуляция и контроль наиболее сложных форм сознательной деятельности, направленной на достижение целей, осуществление намерений и реализацию планов?

Еще несколько десятилетий назад эти вопросы не стояли сколько-нибудь остро. Наука вполне удовлетворялась уподоблением мозга реагирующим приборам, ограничиваясь в его познании элементарными схемами, объединявшими стимулы, приходящие из внешнего мира, и обусловленные прошлыми воздействиями ответы на эти стимулы.

К настоящему времени положение коренным образом изменилось. Стало совершенно ясно, что поведение человека носит активный характер, что оно определяется не только прошлыми воздействиями, но и планами, и намерениями; не только создает соответствующие модели будущего, но и подчиняет им поведение. Стало вместе с тем очевидно, что замыслы и намерения человека, схемы будущего и реализующие их программы не должны оставаться вне сферы научного знания и что лежащие в их основе механизмы могут и должны стать предметом такого же детерминистического анализа и научного объяснения, как и все другие явления и связи объективного мира.

Тенденция к изучению механизмов влияния будущего на реальное поведение вызвала к жизни ряд важнейших физиологических концепций, например концепции «опережающего возбуждения» П. К. Анохина и «двигательной задачи и ее реализации» Н.А. Бернштейна, что явилось признаком коренной смены интересов в физиологической науке, основной задачей которой стало теперь создание «физиологии активности».

Радикально изменился и основной теоретический смысл науки о мозге. Если ранее теория мозга основывалась на механических представлениях (моделях) и допускала возможность объяснения работы мозга, исходя из принципов построения телефонной станции или пульта управления, то в настоящее время мозг человека рассматривается как сложнейшая и своеобразно построенная функциональная система, работающая по специфическим принципам, знание которых может помочь исследователям в построении новых математических и реально действующих схем, позволяющих приблизиться к созданию механических аналогов этого совершенного органа.

Вот почему изучение внутренних закономерностей работы мозга — как бы трудно ни было их познание — привело к возникновению совершенно новых научных дисциплин. Одна из них — бионика — непосредственно предполагает изучение мозга как источника познания новых принципов, которые оказали бы влияние на творческое развитие математики и техники.

Изучение законов работы мозга как органа психической деятельности — сложнейшая задача. Поэтому совершенно естественно, что она не может быть решена умозрительным конструированием, которое может лишь скомпрометировать эту важную отрасль науки и, создав видимость решения сложнейших проблем, фактически стать препятствием для ее прогресса. Именно поэтому ряд книг, посвященных проблемам моделей мозга или мозгу как вычислительному устройству, не помогает, а, скорее, препятствует продвижению подлинно научных знаний о мозге как органе психики.

Подлинный прогресс в этой важной области должен опираться не на логические схемы, а на реальные факты, реальные достижения, на результаты кропотливых наблюдений, относящихся к разным областям науки: морфологии и физиологии, психологии и неврологии.

Естественно, что прогресс этот требует времени и что проникновение в неизвестное — длительный процесс, каждый отдельный этап которого вносит свой вклад в окончательное решение поставленных задач.

Около четверти века назад появилась известная книга Грея Уолтера «Живой мозг», в которой была сделана попытка привлечь данные электрофизиологии для объяснения интимных механизмов работы человеческого мозга и высказаны гипотезы (частично подтвердившиеся, частично оставшиеся предположениями автора) об основных формах жизни мозга и принципах его функционирования.

Через несколько лет после этого появилась монография выдающегося анатома и физиолога Г. Мэгуна «Бодрствующий мозг», представлявшая собой попытку рассмотрения мозга на основании новейших анатомических и нейрофизиологических данных как системы, способной к самостоятельному обеспечению бодрствующего, активного состояния, являющегося условием всякого поведения живого существа.

Значение книги Мэгуна, обобщающей достижения целой группы блестящих исследователей — Моруцци, Джаспера, Пенфилда и других, нельзя переоценить. С ее появлением мозг человека и животных перестал расцениваться как пассивно реагирующий аппарат и был сделан первый шаг в познании его как саморегулирующейся системы.

Однако, описав механизмы бодрствования, Мэгун не сделал анализа основных форм конкретной психической деятельности человека. Механизмы познавательной деятельности (восприятия и мышления), речи и общения, формирования планов и программ поведения, регуляции и контроля — весь этот круг проблем остался за рамками книги. Факты, которые позволили бы подойти к решению этих вопросов и создать основы учения о мозге как органе конкретной психической деятельности, постепенно накапливались различными областями науки.

Подход к анализу этих фактов наметился благодаря успехам современной научной психологии, описавшей строение человеческой деятельности и вплотную подошедшей к анализу функциональной структуры восприятия и памяти, мышления и речи, движения и действия и процессов их формирования в онтогенезе.

Большое число фактов накопилось в современной неврологической и нейрохирургической клинике, где было детально изучено то, как нарушаются сложнейшие формы поведения при локальных поражениях мозга.

Решение этих вопросов существенно приблизилось созданием новой отрасли науки — нейропсихологии, которая впервые сделала целью научного исследования изучение роли отдельных систем головного мозга в осуществлении психической деятельности.

Все это сделало возможным (и необходимым) подготовку настоящей книги, в которой автор попытался обобщить современные представления о мозговых основах сложной психической деятельности человека и рассказать о том, какие системы головного мозга принимают участие в построении восприятия и действия, речи и мышления, движения и целенаправленной сознательной деятельности.

В основе книги лежат материалы, собранные автором в течение длительной (свыше 40 лет) работы по психологическому изучению больных с локальными поражениями мозга. Большая часть этой книги посвящена, таким образом, анализу изменений, наблюдаемых в поведении таких больных.

Нейропсихология стала за последние десятилетия важной практической областью медицины, позволившей привлечь новые приемы с целью ранней и возможно более точной топической диагностики локальных поражений мозга и к научно обоснованному восстановлению функций.

Одновременно она явилась мощным импульсом к пересмотру основных представлений о внутреннем строении психологических процессов, важнейшим средством создания теории мозговых основ психической деятельности человека.

Обобщение данных, соответствующих современному этапу становления нейропсихологии, представляет собой основную задачу этой книги.
Глава I.
^ ТРИ ИСТОЧНИКА ЗНАНИЙ О ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ МОЗГА


Наши знания о функциональной организации мозга животных и человека являются результатом использования трех следующих методических процедур:

  1. во-первых, сравнительно-анатомических наблюдений;

  2. во-вторых, физиологического метода раздражений отдельных участков мозга;

  3. в-третьих, метода разрушения ограниченных участков мозга, а при исследовании функциональной организации мозга человека — клинических наблюдений над изменением поведения больных с локальными поражениями мозга.

Остановимся подробно на каждом из этих источников в отдельности.

^ 1. СРАВНИТЕЛЬНО-АНАТОМИЧЕСКИЕ ДАННЫЕ

Изучение строения нервной системы — основного аппарата связи животного с внешним миром и регуляции его поведения — дает неоценимый материал для анализа того, что является субстратом психической деятельности на отдельных этапах психического развития, как осуществлялась регуляция поведения на последовательных этапах эволюции и что отличает нервную систему животных, живущих в различных условиях внешней среды и характеризующихся различными формами поведения.

Тесная связь строения нервного аппарата с уровнем организации поведения и экологическими особенностями животного позволяет широко использовать сравнительно-анатомический анализ для исследования способов жизни, особенностей поведения и основных принципов организации деятельности животных.

Рассмотрим в самом кратком виде наиболее существенное в том, что может дать сравнительно-анатомический метод для решения вопроса о мозге как органе психики.

Основные принципы эволюции и строения мозга как органа психики

Рассматривая строение нервной системы на последовательных этапах эволюции животного мира, можно выделить основные принципы этой эволюции.

Основной и наиболее общий принцип заключается в том, что на различных этапах эволюции отношения организма животного со средой и его поведение регулировались различными аппаратами нервной системы, и, следовательно, мозг человека является продуктом длительного исторического развития.

Хорошо известно, что на наиболее элементарных уровнях развития животного мира (например, у гидроидных полипов) прием сигналов и организация движений осуществляются диффузной, или сетевидной, нервной системой; на этом этапе эволюции единый центр, перерабатывающий информацию и регулирующий поведение животного, отсутствует и поток возбуждения определяется теми временными доминирующими очагами, которые создаются в том или ином участке нервного аппарата животного. Именно поэтому здесь можно говорить о временно доминирующих участках или органах, соответствующих этим временно наиболее возбудимым сегментам организма (Бете, 1931 и др.). В процессе эволюции диффузная сетевидная система (сохранившаяся в организме животных) уступила ведущее место новым образованиям. В передних отделах головного мозга животного концентрировались сложные рецепторные приборы, и сигналы, получаемые ими, стали направляться в передний ганглий, который перерабатывал получаемую информацию и переключал возбуждение на эфферентные пути, идущие к двигательному аппарату животного.

На ранних ступенях эволюции (например, у червей) передний ганглий имел относительно простую функциональную структуру. На позднейших ступенях (например, у насекомых) по мере дифференциации системы рецепторов передний ганглий приобретает все более сложную функциональную организацию: в нем выделяются нейроны, изолированно реагирующие на обонятельные, зрительные и хемо-тактильные раздражения, промежуточные, ассоциативные нейроны и нейроны с двигательными функциями. Передний ганглий насекомых (например, пчел) становится идеальным органом реализации врожденного (инстинктивного) поведения, которое может пускаться в ход элементарными стимулами и тем не менее иметь удивительную по своей сложности программу. Эти механизмы, получившие название IRM {innate releasing mechanisms), были хорошо изучены этологами (Лоренц, 1950; , Торп, 1956; Тинберген, 1957), и мы не будем останавливаться на них.

Нервные аппараты переднего ганглия, хорошо приспособленные для реализации врожденных программ поведения, не могут, однако, обеспечить приспособления к резко меняющимся условиям среды. В таких случаях сохранение вида оказывается возможным либо благодаря избыточному производству индивидуальных особей, из которых выживают лишь очень немногие, либо благодаря выработке индивидуально-изменчивого поведения.

По второй линии идет развитие позвоночных. Если у низших позвоночных еще остается старый принцип сохранения индивида и вида, который хорош для существования в условиях однородной водной среды, то при переходе к наземному существованию появляется необходимость в нервных аппаратах, которые в отличие от переднего ганглия обеспечивали бы максимальную индивидуальную изменчивость поведения, соответствующую большой изменчивости условий жизни на земле.

Таким биологическим задачам отвечает головной мозг. На ранних этапах эволюции позвоночных (например, у рыб и земноводных) он допускает лишь относительно небольшую изменчивость поведения. Преобладающие формы поведения реализуются здесь аппаратами элементарного обонятельного и среднего мозга (у рыб они являются единственными и поэтому ведущими нервными образованиями). С дальнейшим развитием к ним присоединяются нервные аппараты, позволяющие животному осуществить более сложные формы анализа и приспособления к условиям среды; у птиц ведущее место занимают уже аппараты межуточного мозга (зрительный бугор, подкорковые двигательные узлы), которые образуют таламо-стриальную систему, обеспечивающую более высокий уровень поведения, названный Н.А.Бернштейном (1947) уровнем синергий.

У млекопитающих аппараты таламо-стриальной системы уступают ведущее место более сложным нервным аппаратам коры головного мозга, лежащим в основе огромного разнообразия форм индивидуально-изменчивого поведения.

Корковые аппараты в полной мере способны получать и анализировать информацию, поступающую из внешней среды, перерабатывать ее, формировать новые связи и хранить их следы. Они в состоянии заменять врожденные программы поведения сложными индивидуально-изменчивыми, обеспечивая не только выработку условных рефлексов, но и формирование значительно более сложных программ индивидуального поведения.

По мере эволюции высших позвоночных значение этих аппаратов все более возрастает, и на этапе человека, когда к естественным условиям среды прибавляются условия общественно-исторические и когда возникает язык — уникальная для человека система кодов, эти аппараты достигают такого уровня развития, что оказываются в состоянии обеспечить формы поведения, по степени сложности не имеющие равных в животном мире.

Исследователи неоднократно пытались продемонстрировать прогрессивное развитие мозга на последовательных ступенях эволюции, принимая за показатель этого развития изменение отношения массы мозга к массе тела. Пожалуй, наиболее отчетливо это увеличение описывается индексом Хауга (1958):

где Е — масса мозга, р — масса тела, а 0,56 — эмпирически найденный индекс; другими используется индекс Я.Я. Рогинского:

(обозначения те же).

В таблице 1 приводятся полученные с помощью этих индексов данные, показывающие, как изменялся мозг на отдельных ступенях эволюции.

Уже эти цифры показывают, насколько большое место занимает мозг человека в системе его тела, а следовательно, и в организации его поведения.

Постепенное возрастание роли больших полушарий и коры мозга на последовательных этапах филогенеза видно уже из приведенных выше рисунков 1 и 2. Оно отчетливо подтверждается данными, представленными в таблице 2, составленной в Московском институте мозга. Цифры показывают, что если на каждое волокно зрительного нерва у крысы приходится лишь 10 нервных клеток коры, то у макаки их число увеличивается до 145, а у человека — до 500; аналогичное увеличение числа нейронов коры, приходящихся на одно нервное волокно, отмечается и в слуховой сфере (у обезьяны — преимущественно зрительного животного — увеличение не столь заметно); тот же принцип сохраняется и в отношении соответствующих отделов подкорки.

Мы видим, таким образом, что в процессе эволюции удельный вес коры — по сравнению с нижележащими подкорковыми образованиями — непрерывно возрастает.

Естественно, что большие полушария головного мозга и его кора становятся у человека важнейшим аппаратом регуляции поведения. Существенным является тот факт, что это огромное увеличение объема и массы мозга связано не с ростом наиболее древних, стволовых, отделов мозга, а в первую очередь с развитием больших полушарий и их наиболее существенной части — коры (рис. 3).

Было бы неправильным думать, что все области коры человеческого мозга развиваются в процессе эволюции равномерно. Внимательный анализ показал, что развитие больших полушарий связано прежде всего с ростом новых областей коры, которые у низших млекопитающих едва намечены, а у человека составляют основную часть коры (табл. 3); древние области коры — палеокортекс (включающий образования коры, еще не отделенные от подкорковых образований), архикортекс (образования двуслойной древней коры, входящей в систему обонятельного мозга) и межуточная кора (образования, носящие переходный характер между только что упомянутыми), напротив, у человека составляют лишь незначительную часть коры, в то время как у низших млекопитающих они доминируют.

С переходом от высших млекопитающих (обезьян) к человеку эволюция мозга связана преимущественно с увеличением площади наиболее сложных (третичных) зон коры; площадь более элементарных отделов коры (первичных и вторичных) практически не увеличивается (а иногда даже становится меньше) (рис. 4).

В таблице 4 мы приводим данные отечественных исследователей, объединенные Московским институтом мозга.

Эти данные убедительно показывают принципиальные изменения в соотношении отдельных зон мозговой коры при переходе от низших обезьян к высшим, а затем к человеку. Они позволяют видеть, что относительный размер более просто организованной лимбической области снижается с переходом к человеку; относительный размер прецентральной (двигательной) коры остается без изменений; размер первичной (проекционной) затылочной коры у человека даже уменьшается по сравнению с таковой у обезьяны, в жизни которой зрительное восприятие играет особенно большую роль. Напротив, размеры височной области у человека значительно увеличиваются, а размеры третичных полей коры — нижнетеменной и лобной областей — возрастают в несколько раз.

Мы видим, таким образом, какое огромное место в коре мозга человека отводится аппаратам, связанным с приемом, переработкой (кодированием) и синтезом информации, получаемой от различных анализаторов, и аппаратам, принимающим участие в выработке и сохранении сложнейших программ поведения и контроля психической деятельности.

На детальном анализе роли этих аппаратов в структуре психических процессов человека мы остановимся далее.

Было бы, однако, глубоко неправильным думать, что если у человека кора головного мозга приобретает ведущую роль, то все нервные образования, которые на более низких этапах эволюции были единственными аппаратами, обеспечивающими организацию поведения, теперь совершенно отстраняются от работы.

Важнейший принцип работы мозга заключается в том, что прежние нервные аппараты сохраняются в нем, но сохраняются, если пользоваться выражением Гегеля, в снятом виде, иначе говоря, сохраняются, уступая ведущее место новым образованиям и приобретая иную роль. Они все больше и больше становятся аппаратами, обеспечивающими фон поведения, принимающими активное участие в регуляции состояний организма, передавая как функции получения, переработки и хранения информации, так и функции создания новых программ поведения и регуляции и контроля сознательной деятельности высшим аппаратам коры головного мозга (рис. 5).

Забывать это положение и рассматривать аппараты коры головного мозга в отрыве от лежащих ниже образований означало бы допускать грубейшую ошибку. Мы хорошо знаем сейчас, что разные по сложности формы поведения даже у человека могут осуществляться с помощью различных уровней нервной системы.

Каждый физиолог и невролог хорошо знает, что такие простейшие элементы поведения, как сегментарные рефлексы (например, коленный рефлекс, элементарные защитные рефлексы), осуществляются лишь механизмами спинного мозга, и у больного, у которою ранение полностью отделило аппараты спинного мозга от более высоких уровней, эти рефлексы могут сохраняться или даже усиливаться, хотя и не улавливаются сознанием.

Физиологам известно также, что такая сложнейшая врожденная форма поведения, как регуляция обменного равновесия (гомеостаза), обеспечиваемая дыханием, пищеварением и терморегуляцией, осуществляется посредством механизмов, заложенных в верхних отделах ствола (продолговатом мозге, гипоталамусе); при нарушении их соответствующие процессы расстраиваются; грубые поражения этих механизмов могут привести к нарушению «витальных функций» и смерти.

Кроме того, физиологи и неврологи знают, что еще более сложные формы поведения, предполагающие обеспечение тонуса, синергий и координацию, тесно связаны с работой межуточного мозга и подкорковых двигательных узлов (таламо-спинальной системы); поражение их, не вызывая нарушения сложных познавательных процессов, приводит к грубому нарушению «фонового» поведения. Особый интерес в связи с этой проблемой представляют результаты наблюдений над больными, страдающими паркинсонизмом, накопившиеся за последние три десятилетия в результате широкого изучения эпидемического энцефалита и распространения стереотактических операций.

Наконец, хорошо известно, что наиболее сложные формы деятельности не могут быть обеспечены без участия коры головного мозга, являющейся органом высших форм поведения животных и сознательного поведения человека.

Таким образом, ясно, что сложные рефлекторные процессы и сложные формы поведения могут осуществляться разными уровнями нервной системы, каждый из которых вносит в функциональную организацию поведения свой вклад.

Последние десятилетия позволили во многом уточнить только что обозначенное положение. Было показано, что низшие уровни нервного аппарата участвуют в организации работы коры больших полушарий, регулируя и обеспечивая ее тонус.

Роль нижних отделов ствола и образований межуточного мозга в обеспечении и регуляции тонуса коры была показана сравнительно недавно благодаря классическим работам Мэгуна и Моруцци (1949 и др.), посвященным так называемой восходящей активирующей ретикулярной формации.

Забывать об участии низших уровней мозгового аппарата в наиболее сложных формах поведения и игнорировать тот факт, что они обеспечивают нужное состояние коры и выступают как регулятор общего фона психической деятельности, значило бы сейчас допускать серьезную ошибку. Далее (ч. первая, гл. III) мы остановимся на этом вопросе подробнее.

Аппараты стволового уровня не работают в полной изоляции от коры головного мозга и сами испытывают ее регулирующее влияние.

Работы Мак-Кэллока и др. (1946), Френча и др. (1955), Линдсли (1955, 1956, 1961), Жувэ и др. (1956, 1961), Эрнандес-Пеона (1966, 1969) и большое число исследований, на которых мы еще остановимся далее, показали огромную роль нисходящей активирующей ретикулярной формации, направляющей импульсы от коры головного мозга к нижележащим образованиям и приводящей аппараты регуляции тонуса в соответствие с информацией, получаемой субъектом, и с задачами, которые он ставит перед собой.

Данные, полученные в современных анатомических и физиологических исследованиях, позволяют сформулировать принцип вертикального строения функциональных систем мозга, иначе говоря, принцип, согласно которому каждая форма поведения обеспечивается совместной работой разных уровней нервного аппарата, связанных друг с другом как восходящими (летальными), так и нисходящими (фугальными) связями, превращающими мозг в саморегулирующуюся систему.

Этот прочно вошедший в науку принцип утверждает, что кора головного мозга, находящаяся в постоянном взаимодействии с нижележащими образованиями, не является единственным мозговым субстратом психических процессов.

Этот принцип делает понятным и те факты, которые ставили в тупик многих исследователей прошлого. Было показано, что разобщение отдельных зон коры путем круговой изоляции может не влечь за собой существенных изменений в поведении животных, в то время как подрезка коры, изолирующая ее от нижележащих образований, неизбежно приводит к значительным нарушениям ее регулирующих функций (Чоу, 1954; Сперри, 1959; Прибрам, Блейрт, Спинелли, 1966). Все это означает, что отдельные участки коры головного мозга соединяются между собой не только с помощью горизонтальных (транскортикальных) связей, но и через нижележащие образования, иначе говоря, посредством системы вертикальных связей.

Имея в виду сформулированные выше положения об эволюции нервных аппаратов, основных уровнях нервной системы и их взаимодействии, мы переходим сейчас к рассмотрению данных, которыми располагает сравнительная анатомия коры головного мозга.

Структурная и функциональная организация коры головного мозга

Наблюдения, показавшие, что мозг в целом и его кора в частности обладают неоднородным строением, относятся еще к началу прошлого века.

Ф. Галль, известный анатом, вошедший в историю науки как основатель фантастической «френологии» (концепции о функциональной организации мозга, исходящей из представлений о локализации сложных психических «способностей» в его ограниченных участках), впервые отличил серое вещество, составляющее мозговую кору и подкорковые серые образования, от белого вещества, состоящего из проводящих волокон, связывающих отдельные участки коры и соединяющие кору большого мозга с периферией. Однако это открытие, сделавшее Галля подлинным основателем морфологии мозга, долго оставалось без адекватной оценки, и настоящее раскрытие функций коры головного мозга, ее проводящих путей и серого вещества, заложенного в глубине больших полушарий, было сделано лишь спустя несколько поколений.

Значительный шаг вперед был сделан в 1863 г. киевским анатомом В. А. Бецом, занимавшимся микроскопическим изучением клеточного состава мозговой коры. Ему принадлежит открытие, которому было суждено стать началом целой эпохи блестящих исследований.

Описывая строение различных участков мозговой коры, он обнаружил, что их морфологическая структура в высокой степени неоднородна: если кора передней центральной извилины включает в свой состав большие, имеющие форму пирамиды нервные клетки (они получили в дальнейшем название гигантских пирамидных клеток Беца), то прилегающая к ней кора задней центральной извилины имеет совсем иное, мелкозернистое строение и совсем лишена пирамидных клеток (рис. 6).

Позднее было установлено, что различие этих двух областей коры не только морфологическое, но и функциональное. Гигантские пирамидные клетки Беца (составляющие пятый слой коры) оказались источниками двигательных импульсов, идущих от коры к периферической мускулатуре, а передняя центральная извилина, в которой они были сосредоточены, — моторной областью коры головного мозга. Поля мозговой коры, имеющие мелкозернистое строение и отличающиеся развитым четвертым слоем нервных клеток (к их числу относятся и образования задней центральной извилины), оказались аппаратами, к которым подходят чувствительные волокна, начинающиеся в периферических органах чувств (рецепторах), а соответствующие зоны коры — первичными чувствительными образованиями коры большого мозга.

С выделением двигательных и сенсорных областей (или первичных двигательных и сенсорных центров) был сделан первый шаг к созданию функциональной карты коры головного мозга, и кажущаяся однородной масса серого вещества, покрывающая тонким слоем большие полушария, начала приобретать дифференцированный характер.

Дальнейшие сравнительно-анатомические наблюдения подтвердили плодотворность наметившегося подхода. Оказалось, что внимательное изучение «первичных» областей мозговой коры позволяет делать точные выводы о некоторых особенностях поведения животного. Следующие примеры хорошо иллюстрируют это положение.

На рисунке 7 мы приводим срезы из двигательных областей мозговой коры австралийского медвежонка (рис. 7, а) и летучей собаки (рис. 7, б). Легко увидеть, что на первом срезе присутствует сравнительно немного гигантских пирамидных клеток, в то время как на втором срезе число их значительно больше, а величина гораздо меньше. Не указывает ли нам этот факт на относительно сильные и грубые движения первого животного и более тонкие и многообразные движения второго?

К аналогичным заключениям позволяет прийти и сравнительно-анатомический анализ строения сенсорных отделов коры.

Рисунок 8 показывает то место, которое занимают образования обонятельных полей в коре головного мозга ежа (рис. 8, а, б) и человека (рис. 8, в, г). Он указывает на ведущую роль обонятельного анализатора у низших млекопитающих и незначительное место этого анализатора у человека.

Подобный вывод можно сделать и при сравнении зрительных полей животных и человека (рис. 9): значительное развитие мелкоклеточных образований зрительной коры обезьяны, составляющих у нее до 40 % площади коры (рис. 9, б), по сравнению с такими же образованиями зрительной коры крота (рис. 9, а) объясняется тем, что ведущее место в поведении первого животного занимает зрение, в то время как в поведении второго животного, ориентирующегося в окружающем мире с помощью обоняния, оно занимает лишь сравнительно небольшое место.

Сравнительно-анатомическое изучение коры головного мозга, начавшееся с выделения основных, первичных, или проекционных, зон мозговой коры, существенно продвинулось за последние десятилетия.

Решающие успехи были сделаны еще в начале этого столетия, когда работы Кэмпбелла (1905) и Бродмана (1909), Рамон-и-Кахала (1909 — 1911) и Болтона (1933) позволили составить цитоархитектонические карты мозговой коры; эти карты, существенно уточненные Ц. и О. Фогтами (1919 — 1920) и работами Московского института мозга, позволили приблизиться к описанию основных принципов строения мозговой коры животных и человека и внесли неоценимый вклад в наши знания о мозге как органе психики.

  1   2   3   4   5   6   7   8   9   ...   20

Похожие:

Основы нейропсихологии iconКнига К. Прибрама «Языки мозга»
Предлагаемая советскому читателю книга принадлежит перу одного из наиболее творческих представителей американской нейропсихологии...
Основы нейропсихологии iconОсновы групповой психотерапии
Метод и основы методики работы психотерапевта, ориентированного на группанализ. 101
Основы нейропсихологии iconЧто такое предлагаемые обстоятельства?
Экзаменационные требования по курсу «Сценарно-режиссерские основы» «Теория драмы и основы сценарного мастерства»
Основы нейропсихологии iconПрограмма обучения
Основы предпринимательства. Основы гражданского права. Положения законодательства в сфере предпринимательства в Российской Федерации...
Основы нейропсихологии iconОсновы логистики
Винокур Л. Б. Основы логистики: Учеб пособие. – Владивосток: двгма, 2001. – 173 с
Основы нейропсихологии iconОсновы предпринимательства
Шебеко К. К., Хроменкова Т. Л., Рудаков М. Ф., Воробьев В. А., Филипцов А. М. Основы предпринимательства: учебно-методическое пособие...
Основы нейропсихологии iconОсновы предпринимательства
Шебеко К. К., Хроменкова Т. Л., Рудаков М. Ф., Воробьев В. А., Филипцов А. М. Основы предпринимательства: учебно-методическое пособие...
Основы нейропсихологии iconВопросы к коллоквиуму «Основы классификации. Низшие и высшие споровые растения» 2011 год
Биологические основы классификации растений. Таксономические категории и таксоны, бинарная номенклатура
Основы нейропсихологии iconПлан лекции: Организационно-педагогические основы начального профессионального...
Организационно-педагогические основы начального профессионального образования (нпо)
Основы нейропсихологии iconПредполагает достаточно узкий круг читателей. Нельзя сказать, что...
А. Р. Лурии. За эти годы я возвращался к ней много раз. Преподавая курс нейропсихологии, просто невозможно удержаться от цитирования...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2015
контакты
userdocs.ru
Главная страница