Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь


НазваниеПочти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь
страница7/51
Дата публикации08.03.2013
Размер6.56 Mb.
ТипДокументы
userdocs.ru > Астрономия > Документы
1   2   3   4   5   6   7   8   9   10   ...   51

Названная «гипотезой Шустера» (по имени сэра Артура Шустера (1851 — 1934), первым отметившего эту взаимосвязь; его эмпирическое открытие и даже само имя необъяснимым образом исчезли из всей литературы НАСА по планетарному магнетизму), эта теория успешно предсказала силу магнитного поля (Блэкетт 1947, Уорик 1971) Земли, Солнца и огромное поле Юпитера (в 20000 раз больше земного дипольного момента). Прогноз Шустера, сделанный за 60 лет до того, как космические аппараты «Пионер-10» и 11 в 1973–1974 годах подтвердили его (Уорик 1976), в 1971 году заставили Уорика так прокомментировать предсказательную силу «гипотезы Шустера: «Динамо — теория еще не дала верного прогноза ни об одном космическом поле. Ее использование сегодня основывается на предположении, что ни одна другая теория не является более соответствующей наблюдениям».

И в самом деле, после того как «Маринер-10» обнаружил магнитное поле вокруг Меркурия, что не только соответствовало гипотезе Шустера, но и прямо противоречило динамо–теории, даже Карл Саган признал, что существовала необходимость для серьезного пересмотра научного взгляда на планетарный магнетизм.

Взяв за основу предположение Шустера, сделанное в 1912 году, Хогленд и Торан графически нанесли современные параметры вращательного момента и наблюдаемого магнитного дипольного момента (данные взяты для всех планетарных объектов, которые посещались космическими аппаратами с магнитометрами) и обнаружили, что гипотеза Шустера получила подтверждение — за исключением Марса (который лишился магнитного поля в результате недавней катастрофы, речь о которой пойдет позднее) и Урана (см. ниже). Очевидно, что динамо — теория не дала ни одного верного прогноза планетарного магнитного поля, а теорема Шустера оказалась верной почти во всех случаях.

Уран, являющийся единственным исключением из теоремы Шустера, на самом деле можно считать исключением, подтверждающим правило. Уран имеет почти такой же период вращения, как и Нептун, и по определению должен иметь магнитное поле почти такой же силы. Однако сила магнитного поля Нептуна вдвое меньше земной, в то время как у Урана оно равно двум третям земного. Если теорема Шустера верна, магнитосферы двух планет должны иметь почти одинаковую интенсивность. В реальности же они имеют соотношение около двух к одному.

Уран, однако, является исключением и по многим другим причинам — угол его наклона составляет почти 90° к вертикали Солнца, что указывает на то, что в недавнем прошлом на нем произошло смещение полюсов, которое и стало причиной несхожести его характеристик с другими планетами. Если это произошло в недавнем геологическом прошлом, после этого логически должен следовать период несоответствия теореме Шустера. Учитывая, что также имелся гиперпространственный фактор (в соответствии с опытами по сферической прецессии ДеПалмы), который мог влиять на настоящее состояние Урана, и поскольку наблюдения Шустера срабатывали в случаях с другими планетами, представляется вероятным, что у исключительности Урана имеется еще одна не до конца понятая причина. Но, очевидно, что если теорема Шустера верна в семи из девяти случаев, а динамотеория — ни в одном, то первая является более предпочтительной.

Наблюдаемая корреляция вращательного момента и магнитного дипольного момента навела Хогленда на мысль провести такую же простую связь и в его собственной работе. Рассматривая взаимоотношение между аномальным инфракрасным излучением и вращательным моментом, он выяснил, что оно так же точно соответствует общему системному вращательному моменту каждой из планет. Если графически отобразить соотношение общего вращательного момента совокупности объектов, таких как излучающие планеты нашей Солнечной системы вместе с Землей и Солнцем), и общее количество внутренней энергии, которую каждый объект излучает в космос, результат будет ошеломляющим.

Чем большим общим системным вращательным моментом обладает планета (или любое небесное тело), тем больше аномальной энергии она может производить (на самом деле энергия — наподобие «аномальной энергии», которую ДеПалма наблюдал в своих экспериментах с вращающимся шаром — «проводилась» внутрь вращающейся массы из более высокого измерения, через трехмерное «эфирно–торсионное поле»).

В гиперпространственной модели физики это простое, но в то же время обладающее большой энергией взаимоотношение, вероятно, является эквивалентом формулы Е=МС: общая внутренняя светимость небесного объекта, вероятно, зависит от только одного физического параметра: светимость равняется общему системному вращательному моменту (объекта плюс все спутники). Это означает, что количество энергии, которое излучает данный объект, определяется силой, прилагаемой к нему через гиперпространство, а эта гиперпространственная энергия в нашем трехмерном мире измеряется как вращательный момент. Графически вся эта зависимость выглядит вполне очевидной. Все планеты на графике ведут себя правильно, за исключением Солнца. Создается впечатление, что оно каким- то образом теряет значительную часть своего вращательного момента.

Принято считать, что Солнце и все похожие на него звезды — это огромные ядерные печи, топливо для которых создается распадом материи на шаровые молнии энергии. Этот процесс обеспечивает синтез атомов внутри Солнца. Следовательно, он должен создавать побочные продукты. Одним из таких побочных продуктов синтеза является нейтрино, субатомные частицы, не имеющие электрического заряда. Однако эксперименты по измерению потока нейтрино от Солнца показали, что Солнце не излучает того количества нейтрино, которое должно было бы излучать пропорционально излучаемой энергии в соответствии с обычной моделью. Если энергия Солнца вырабатывается в результате «термоядерной реакции» (в соответствии со стандартной моделью), то регистрируемый «дефицит нейтрино» составляет до 60%. Еще более удивительно, что некоторые типы первичных нейтрино (которых подсчитывают для того, чтобы объяснить основной объем реакций синтеза внутри Солнца, основываясь на лабораторных экспериментах) просто отсутствуют.

Теоретические поправки последнего времени к существующей квантовой теории в совокупности с данными новых нейтрино–детекторов должны, вероятно, вновь изменить данные по наблюдаемому количеству нейтрино (и «разновидностям») и таким образом привести наблюдаемый «нейтрино–дефицит» Солнца в соответствие с исправленной теорией. У нас, однако, есть подозрение, что такие сомнительные манипуляции с оригинальной стандартной нейтринно–солнечной моделью — созданной, что примечательно, до того, как аномальный солнечный нейтрино–дефицит был открыт при помощи наблюдений — является своего рода «академическим шулерством»…

По иронии, объяснение очевидного отклонения Солнца от стандартной модели содержится в удивительном отклонении его кривой на нашем графике вращательного момента/светимости.

В гиперпространственной модели первичный источник энергии Солнца, как и планет, должен зависеть от общего вращательного момента — собственного «спина» плюс общий вращательный момент планетарных масс на орбите. Как упоминалось выше, несмотря на то, что Солнце обладает 98% массы Солнечной системы, оно имеет всего 2% общего вращательного момента. Все остальное принадлежит планетам. Таким образом, если гиперпространственная модель верна, прибавляя момент их части к вращательному моменту Солнца, мы должны увидеть, что на графике Солнце должно следовать той же линии, что и планеты, от Земли до Нептуна. Однако это не так.

Самое очевидное объяснение этой дилеммы — это то, что гиперпространственная модель просто ошибочна. Менее очевидная версия — мы что- то упустили, например, дополнительные планеты.

Пытаясь объяснить недостающий вращательный момент, Хогленд нашел первый доказуемый прогноз гиперпространственной модели. Если поставить еще одну большую планету (или пару планет поменьше) за Плутон (расстояние, несколько большее, чем от Земли до Солнца), общий вращательный момент Солнца войдет в график до конечного пересечения с линией (в процентном отношении — около 30% от внутренней энергии, которая должна производиться реальной термоядерной реакцией). Это дает отдельный повод предположить, что современное руководство по расчетам вращательного момента Солнца является неполным по одной очевидной причине: мы еще не обнаружили все основные планеты Солнечной системы.

Поэтому первым прогнозом гиперпространственной модели стало то, что в конце концов при помощи наблюдений будет найдена либо одна большая, либо две маленьких планеты Солнечной системы, обращающихся в одном направлении. В обоих случаях эти наблюдения в определенных границах позволят Солнцу занять его предсказанное положение на графике и подтвердят взаимосвязь между вырабатываемой энергией и вращательным моментом. Связь между вращательным моментом и вырабатываемой энергией имеет и еще один, более широкий смысл. Если она действительно существует, это означает, что представления об иерархии Солнечной системы не соответствуют реальности. В гиперпространственной модели хвост (планеты и луны) машет собакой (Солнцем) - предположение, которое имеет далеко идущие последствия.

Подтверждение?

Следующим этапом проверки этого аспекта модели был поиск свидетельства того, что, возможно, может существовать еще один член нашей Солнечной системы. Астрономы многие годы вели поиск «Планеты X». Причиной исследований являлся факт, что нечто, предположительно большая неизвестная планета, оказывало влияние на орбиты Нептуна и Урана. Поиски этого «возмутителя» в итоге привели к открытию Плутона, однако никакой большой планеты так и не было найдено, по крайней мере официально.

При этом было сделано несколько очень интересных «неофициальных» открытий, которые могли иметь отношение к этому прогнозу. В 1982 г. на первой полосе «Вашингтон пост» опубликовала интервью с д–ром Джерри Нойгебауэром об объекте, обнаруженном на Орионе инфракрасным спутником IRAS примерно за 50 миллиардов миль от Земли. Этот объект по своим параметрам точно соответствовал прогнозу Хогленда. На сегодняшний день не имеется ни последующих наблюдений этого объекта, ни документов по нему. На все запросы д–р Нойгебауэр отвечает, что цитата «вырвана из контекста. Я ничего не знаю ни об этом, ни о последующих наблюдениях».

Такой ответ Нойгебауэра является уклонением от истины. Кто из нас мог бы заявить, что он ничего не знает о предмете, о котором он говорил в статье в «Вашингтон пост»? Если прочитать оригинал интервью и статьи, полностью основанной на информации Нойгебауэра и д–ра Джеймса Хаука, становится понятно, что они говорят неправду. В статье описывается небольшой темный объект размером с Юпитер, находящийся в 50 миллиардах миль от Земли. На этом расстоянии (около 537 астрономических единиц) объект, вероятно, должен быть коричневым карликом, телом, имеющим размер примерно как у Юпитера, однако в 50 раз тяжелее. Далее в статье говорится, что для визуального наблюдения за объектом было задействовано «два различных телескопа» — хотя Нойгебауэр утверждает, что последующих наблюдений никогда не проводилось. Очевидно, что на первые результаты наблюдений IRAS опущен занавес отрицания.

В 1999 г. в ряде новостных заметок вновь приводились свидетельства существования еще одного члена Солнечной системы, на этот раз в созвездии Стрельца, точно напротив Ориона на небесной сфере. Этот объект предположительно имел тот же размер, что и объект, обнаруженный IRAS, однако на более дальнем расстоянии — между 25000 и 32000 астрономических единиц. На его существование указывали орбиты долгопериодических комет. Оба этих факта доказывают, что предсказание Хогленда о существовании еще одной планеты (планет) на большом расстоянии от Земли, как минимум, опирается на несколько наблюдений. Отличительной чертой модели Хогленда от других теорий Планеты X является специальное предсказание того, что объект, о котором идет речь (если его существование в конце концов официально подтвердят), будет обладать вращательным моментом, достаточным для того, чтобы сдвинуть Солнце на причитающееся ему место на графике. Однако что можно будет спросить, когда НАСА все же обнаружит нашу недостающую основную десятую планету (хотя Плутон недавно понизили до просто «объекта Солнечной системы»), если нам об этом сообщат? Целый ряд «красных» исследователей давно предсказали существование Планеты X, и если согласиться, что она найдена, это даст подтверждение их моделям и теориям. Если копнуть глубже, становится очевидным, что причины, побуждающие НАСА «закрыть Нойгебауэру рот», имеют гораздо большее отношение к политике (как обычно), чем к науке.

Инфракрасная переменная

Следующий тест гиперпространственной модели также основывается на наблюдении инфракрасного излучения. Если наблюдения Хогленда и Шустера были правильными и между светимостью, интенсивностью магнитного поля и вращательным моментом существует прямая связь, то должны быть определенные следствия. Поскольку в модели Хогленда предполагается, что инфракрасное излучение имеет гиперпространственную природу, т. е. связано с геометрией высокой размерности, то орбитальные изменения в конфигурации «системы» (постоянно движущиеся планеты и луны Солнечной системы) по определению должны вести к переменной выработке энергии — как настройка реостата для контроля силы света. Это является ключевым моментом, поскольку обычная физика по привычке заявляет, что выработка энергии планетами является «постоянной», явно затухающей только в течение очень долгого промежутка времени.

Если исходным источником планетарной (или звездной) энергии является вихревое (вращающееся) пространственное напряжение между пространственными измерениями (а–ля Максвелл), то постоянно изменяющаяся модель (и в гравитационном отношении, и в отношении измерения) взаимодействующих спутников на орбитах вокруг основных планет/звезд в сочетании с соответственно изменяющейся геометрической конфигурацией относительно остальных основных планет должна модулировать характер распределения напряжения как постоянно меняющийся, геометрически «искривленный «эфир». В гиперпространственной модели Хогленда эта постоянно меняющаяся гиперпространственная геометрия может извлекать энергию из лежащего в основе всего вращения вихревого эфира, а затем высвобождать ее внутри вещества, вращающихся объектов.

Изначально этот избыток энергии может проявляться в различных формах — в виде сильного ветра, необычной электрической активности, даже в виде усиленной ядерной реакции — однако в конце концов он превратится в простой избыток тепла. Из- за основного физического условия резонанса вращения трехмерной массы фактически соединенных планет (звезд) и базового четырехмерного вращения эфира эта выработка избытка энергии должна с течением времени варьироваться, когда меняющаяся орбитальная геометрия «спутников» и основных членов Солнечной системы взаимодействует с первичным спином (и изначальным вихревым эфиром) в фазе и вне ее. По этой причине зависимость от времени этого продолжающегося обмена энергией должна быть главным критерием всего гиперпространственного процесса. Она также должна быть легко определяемой. Все это нужно для измерения мощности инфракрасного излучения Юпитера в различные промежутки времени его прохождения по орбите и в различных положениях относительно других планет. Если гиперпространственная модель верна, инфракрасное излучение Юпитера (и других «газовых гигантов») должно варьироваться в широком диапазоне в зависимости от орбитального положения. В определенное время оно должно превышать каноническую пропорцию два к одному. В остальное время оно должно быть меньше.

История науки насчитывает несколько попыток сделать это. В 1966 и 1969 годах д–р Фрэнк Дж. Лоу с высотного летательного аппарата сделал первые наблюдения аномальной теплопроизводительности Юпитера. Лоу, которого считают отцом современной инфракрасной астрономии, опубликовал первые результаты, показавшие, что теплопроизводительность Юпитера находится в диапазоне 3–1. Позднее он сделал предположение, которое привело к созданию IRAS, первых инфракрасных космических телескопов, с помощью которых и были сделаны наблюдения, позволившие предположить существование Планеты X в Орионе, о которой шла речь ранее. Три года спустя Лоу произвел дальнейшие наблюдения, которые снизили цифру с 3–1 до 21 — разница более чем на 30%, что далеко выходит за пределы допустимой погрешности приборов, использовавшихся в обоих случаях. В 70–х при помощи наземных телескопов цифра была уменьшена еще больше, до соотношения примерно 1,67–1,00, т. е. еще на 30%. В начале 80–х миссия «Вояжер» в значительной степени подтвердила цифру 1,67. Разночтения данных объяснялись тем, что инструменты были недоработаны, а их показания — приблизительны. Поскольку колебания по данным теплопроизводительности в конце 70–х и начале 80–х в конце концов остановились на цифре 1,67, все решили, что это и есть точное значение, а предыдущие результаты были аннулированы.
1   2   3   4   5   6   7   8   9   10   ...   51

Похожие:

Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconГубернатору Санкт-Петербурга
Но поднимая проблемы моего дома, по вышеуказанному адресу, и двора, я понимаю, что это глобальные проблемы России последних 10-15...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconЛюди думают, что спекуляция это игра предсказания будущего, знания...
Это не так. Это игра развивающихся стратегий с побеждающими преимуществами, при­влечением шансов на вашу сторону, работой с этими...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconСтихотворение Владислава Устинова (читает
Победы, вспоминают всё, что предшествовало ей, происходило в течение последних 4-х лет. Сцены в печатном варианте сценария разделены...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconПро безымянных, про полузабытых
Победы, вспоминают всё, что предшествовало ей, происходило в течение последних 4-х лет. Сцены в печатном варианте сценария разделены...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconПочти коммунизм это значит примерно то же, что и "почти беременность"....
Даже можно и не к рублю, а печатать свою, это не принципиально, но деньги будут необходимы. Ещё отличие. Коммунисты начала 20 века...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconЯ из тех, кто еще несколько лет тому назад считал, что знают о Наска...
Наска. Я налетал несколько недель над пустыней и близлежащими холмами, а в начале 70-х многие дни подряд шагал, спотыкаясь, по полям...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconНам специально говорили, что если сравнить ДНК разных людей, то выяснится,...
Славяно-Арийские Веды, были не созданы, а рождены богами. Это может показаться бредом, но только для зомбированных людей, которые...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconТимоти Лири :: История будущего
Что бы мы ни делали и кем бы мы ни были — все это основывается на нашей личной силе. Если ее достаточно, то всего одно сказанное...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь icon«я робот»:
В течение пятидесяти лет робопсихолог доктор Сьюзен Кэлвин наблюдала, как прогресс человечества меняет направление и совершает рынок...
Почти все, что нам сообщает наса в течение последних пятидесяти лет, это ложь iconЕсть ли нам место в "новой экономике"?
Интернетом. Отнюдь. Новая экономика – это экстремальный антрепренерский рынок, почти без границ. Это интуитивное маркетинговое турбо-мышление....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница