Шпаргалка с билетами по физике


НазваниеШпаргалка с билетами по физике
страница6/8
Дата публикации05.04.2013
Размер0.77 Mb.
ТипШпаргалка
userdocs.ru > Астрономия > Шпаргалка
1   2   3   4   5   6   7   8

2) Сила трения. Коэффициент трения-скольжения. Учёт и использование трения в быту и технике.

При равномерном движении одного тела по поверхности другого под воздействием внешней силы на тело действует сила, равная по модулю движущей силе и противоположная по направлению. Эта сила называется силой трения скольжения. Вектор силы трения скольжения направлен против вектора скорости, поэтому эта сила всегда приводит к уменьшению относительной скорости тела. Силу трения, действующую между двумя телами, неподвижными относительно друг друга, называют силой трения покоя.
   Если на тело действует сила
, параллельная поверхности, на которой оно находится и тело при этом остается неподвижным, то это означает, что на него действует сила трения покоя Fтр, равная по модулю и направленная в противоположную сторону силе Следовательно, сила трения покоя определяется действующей на него силой

Наибольшее значение силы трения, при котором скольжение еще не наступает, называется максимальной силой трения покоя. Если действующая на покоящееся тело сила хотя бы немного превысит максимальную силу трения покоя, то тело начнет скользить. максимальное значение модуля силы трения покоя пропорционально модулю силы нормальной реакции опоры. Этот закон впервые установил экспериментально французский физик Кулон. Если обозначить модуль максимальной силы трения покоя через Fтр.макс, то можно записать: где µ - коэффициент пропорциональности, называемый коэффициентом трения покоя. Коэффициент трения характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки.
Билет №18

1) Состав ядра атома. Изотопы. Энергия связи.

В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и Вернер Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода 168O состоит из 8 протонов и   16 - 8 = 8 нейтронов. Ядро атома 23592U состоит из 92 протонов и 235 - 92 = 143 нейтронов. Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий — ядро состоит из одного протона, дейтерий — ядро состоит из одного протона и одного нейтрона, тритий — ядро состоит из одного протона и двух нейтронов. Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Μя - (Mp + Μn). Так как между массой и энергией существует связь Е = mc2, то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра. Есв = Мс2. Выделение этой энергии может происходить при ядерных реакциях. Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

^ 2) Электрический ток в полупроводниках. Собственная и примесная проводимость полупроводников. Термо- и фоторезисторы.

Многие вещества не проводят ток так хорошо, как металлы, но в то же время не являются диэлектриками. Одним из отличий полупроводников – то, что при нагревании или освещении их удельное сопротивление не увеличивается, а уменьшается. Но главным их практически применимым свойством оказалась односторонняя проводимость. Вследствие неравномерного распределения энергии теплового движения в кристалле полупроводника некоторые атомы ионизируются .Освободившиеся электроны не могут быть захвачены окружающими атомами, т.к.их валентные связи насыщены. Эти свободные электроны могут перемещаться в металле, создавая электронный ток проводимости. В то же время, атом, с оболочки которого вырвался электрон, становится ионом. Этот ион нейтрализуется за счет захвата атома соседа. В результате такого хаотического перемещения возникает перемещение места с недостающим ионом, что внешне видно как перемещение положительного заряда. Это называется дырочным током проводимости. В идеальном полупроводниковом кристалле ток создается перемещением равного количества свободных электронов и дырок. Такой тип проводимости называется собственной проводимостью. При понижении температуры количество свободных электронов, пропорциональное средней энергии атомов, падает и полупроводник становится похож на диэлектрик. В полупроводник для улучшения проводимости иногда добавляются примеси, которые бывают донорные (увеличивают число электронов без увеличения числа дырок) и акцепторные (увеличивают число дырок без увеличения числа электронов). Полупроводники, где количество электронов превышает количество дырок, называются электронными полупроводниками, или полупроводниками n-типа. Полупроводники, где количество дырок превышает количество электронов, называются дырочными полупроводниками, или полупроводниками р-типа.
Билет №19

1) Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Сила Ампера. Сила Лоренца.

Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами. Магнитное поле. Согласно теории близкодействия ток в одном из проводников не может непосредственно действовать на ток в другом проводнике. В пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным. Электрический ток в одном из проводников создает вокруг себя магнитное поле, которое действует на ток во втором проводнике. А поле, созданное электрическим током второго проводника, действует на первый. Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства магнитного поля:

1. Магнитное поле порождается электрическим током (движущимися зарядами).

2. Магнитное поле обнаруживается по действию на электрический ток(движущиеся заряды).

Подобно электрическому полю, магнитное поле существует реально, не зависимо от нас, от наших знаний о нем.

Магнитная индукция – способность магнитного поля оказывать силовое действие на проводник с током (векторная величина). Измеряется вТл. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

Направление вектора магнитной индукции устанавливают с помощью правила буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции. Линии магнитной индукции. Линия, в любой точке которой вектор магнитной индукции направлен по касательной – линии магнитной индукции. Магнитный поток –величина равная произведению модуля вектора магнитной индукции на площадь и на косинус угла между вектором и нормалью к поверхности. Сила Ампера равна произведению вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника. где l – длина проводника, B – вектор магнитной индукции. Силу Ампера применяют в громкоговорителях, динамиках. Принцип работы: по катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радио приемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца. Сила Лоренца. Поскольку ток представляет собой упорядоченное движение электрических зарядов, то естественно предположить, что сила Ампера является равнодействующей сил, действующих на отдельные заряды, движущиеся в проводнике. Опытным путём установлено, что на заряд, движущийся в магнитном поле, действительно действует сила. Эту силу называют силой Лоренца. Модуль FL силы находится по формуле , где В — модуль индукции магнитного поля, в котором движется заряд, q и v — абсолютная величина заряда и его скорость, ( α- угол между векторами v и В). Эта сила перпендикулярна к векторам v и В, её направление находится по правилу левой руки: если руку расположить так, чтобы четыре вытянутых пальца совпадали с направлением движения положительного заряда, линии индукции магнитного поля входили в ладонь, то отставленный на 900 большой палец показывает направление силы. В случае отрицательной частицы направление силы противоположное. Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу. Силу Лоренца применяют в телевизорах, масс-спектограф.
^ 2) Термоядерная реакция. Энергия солнца и звёзд. Успехи и перспективы развития энергетики в СССР. Борьба СССР за устранения ядерной войны.

Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре. Для слияния ядер необходимо, чтобы они сблизились на расстояние около 10-12 см, т. е. чтобы они попали в сферу действия ядерных сил. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено лишь за счет большой кинетической энергии теплового движения ядер. Энергия, которая выделяется при термоядерных реакциях в расчете на один нуклон, превышает удельную энергию, выделяющуюся при цепных реакциях деления ядер. Термоядерные реакции играют большую роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение. По современным представлениям, на ранней стадии развития звезда в основном состоит из водорода. Температура внутри звезды столь велика, что в ней протекают реакции слияния ядер водорода с образованием гелия. Затем при слиянии ядер гелия образуются и более тяжелые элементы. Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной. Все эти реакции сопровождаются выделением энергии, обеспечивающей излучение света звездами на протяжении миллиардов лет.

Ядерной энергетике, как и многим другим отраслям промышленности, присущи вредные или опасные факторы воздействия на окружающую среду. Наибольшую потенциальную опасность представляет радиоактивное загрязнение. Сложные проблемы возникают с захоронением радиоактивных отходов и демонтажем отслуживших свой срок атомных электростанций. Срок их службы около 20 лет, после чего восстановление станций из-за многолетнего воздействия радиации на материалы конструкций невозможно.

АЭС проектируется с расчетом на максимальную безопасность персонала станции и населения. Опыт эксплуатации АЭС во всем мире показывает, что биосфера надежно защищена от радиационного воздействия предприятий ядерной энергетики в нормальном режиме эксплуатации. Однако взрыв четвертого реактора на Чернобыльской АЭС показал, что риск разрушения активной зоны реактора из-за ошибок персонала и просчетов в конструкции реакторов остается реальностью, поэтому принимаются строжайшие меры для снижения этого риска.

Ядерные реакторы устанавливаются также на атомных подводных лодках и ледоколах.

Билет № 20

1) Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.

Если контур замкнут, то под действием этой э.д.с. появляется электрический ток, названный индукционным. Фарадей установил, что э.д.с. индукции не зависит от способа изменения магнитного потока и определяется только быстротой его изменения. Соотношение называется законом электромагнитной индукции: ЭДС индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником. Знак минус в формуле, является математическим выражением правила Ленца. Известно, что магнитный поток является алгебраической величиной. Примем магнитный поток, пронизывающий площадь контура, положительным.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:1. Определить направление линий магнитной индукции внешнего магнитного поля. 2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (Ф > 0), или уменьшается (Ф < 0). 3. Установить направление линий магнитной индукции магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции при Ф > 0 и иметь одинаковое с ними направление при Ф < 0.  4. Зная направление линий магнитной индукции , найти направление индукционного тока, пользуясь правилом буравчика. Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток
^ 2) Принцип действия тепловых двигателей. КПД тепловых двигателей и пути его повышения. Тепловые двигатели и охрана окружающей среды.

Обычно в тепловых машинах работа совершается расширяющимся газом. Газ, совершающий работу при расширении, называется рабочим телом. Расширение газа происходит в результате повышения его температуры и давления при нагревании. Устройство, от которого рабочее тело получает количество теплоты Q называется нагревателем. Устройство, которому машина отдает тепло после совершения рабочего хода, называется холодильником. Сначала изохорические растет давление, изобарические расширяется, изохорические охлаждается, изобарические сжимается. В результате совершения рабочего цикла газ возвращается в начальное состояние, его внутренняя энергия принимает исходное значение. Согласно первому закону термодинамики, (изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе) . Работа, совершаемая телом за цикл, равный Q. Количество теплоты, полученное телом за цикл, равно разности полученного от нагревателя и отданного холодильнику. Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы , совершаемой двигателем, к количеству теплоты, полученной от нагревателя: Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η<1. КПД теплового двигателя пропорционален разности температур нагревателя и холодильника. При T1-T2=0 двигатель не может работать. Наиболее приемлемыми холодильниками для реальных тепловых машин являются атмосферный воздух или вода при T около 300K Следовательно основной путь повышения КПД – это повышение температуры нагревателя. Один из путей уменьшения загрязнения окружающей среды – переход от использования в автомобилях карбюраторных бензиновых двигателей к использованию дизельных двигателей, в топливо которых не добавляют свинца. Перспективными являются разработку и испытания автомобилей, в которых вместо бензина двигателей используется электродвигатель, питающийся от аккумулятора, или двигатель, использующий в качестве топлива водород. В последнем типе двигателей при сгорании водорода образуется вода.
1   2   3   4   5   6   7   8

Похожие:

Шпаргалка с билетами по физике iconОсновные вопросы учебной программы по физике (1 семестр) 1
Моделирование в физике и технике. Физическая и математическая модели. Проблема точности в моделировании
Шпаргалка с билетами по физике iconГородская открытая олимпиада школьников по физике включена в проект...
Организационный комитет Городской открытой олимпиады школьников по физике приглашает учеников 7-11 классов принять участие в Городской...
Шпаргалка с билетами по физике iconУважаемые студенты!
Решением факультетской комиссии билетами будут награждены следующие студенты, проявившие наибольшее участие в жизни факультета
Шпаргалка с билетами по физике iconШпаргалка по мастерству актера, Новосибирское государственное театральное...
Шпаргалка по мастерству актера, Новосибирское государственное театральное училище, 2002
Шпаргалка с билетами по физике iconОнлайн-конференция состоявшаяся 09. 11. На официальном сайте Земфиры
Здравствуйте,Земфира. Скажите что с билетами на 11. 12 Билеты то есть, то нет и цены котируются от 2500 до 5000. Какова номинальная...
Шпаргалка с билетами по физике iconВ ролях: лариса гузеева, Сергей Колесников
Это история с выстрелами, лотерейными билетами, мужем, любовником и многочисленными интригами. В центре почти детективного сюжета...
Шпаргалка с билетами по физике iconШпаргалка по налогу на доходы физических лиц ( глава 23 нк рф, вступила...
Шпаргалка по налогу на доходы физических лиц ( глава 23 нк рф, вступила в силу с 01. 01. 01) Фл –физические лица
Шпаргалка с билетами по физике iconШпаргалка по теме «Налог на добавленную стоимость (глава 21 нк рф)»
Организации и индивидуальные предприниматели, совершающие операции на территории РФ
Шпаргалка с билетами по физике iconКоллектив авторов  Административное право: Шпаргалка Оглавление
Полномочия государственных учреждений, администраций органов местного самоуправления, организаций
Шпаргалка с билетами по физике iconШпаргалка по биологии ент 2012 "Оленьим мхом"
Автор книга "Философия зоологии", в которой он доказывал изменяемость видовc жан Батист Ламарк
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница