Рост и развитие растений


НазваниеРост и развитие растений
страница1/7
Дата публикации11.07.2013
Размер0.79 Mb.
ТипДокументы
userdocs.ru > Биология > Документы
  1   2   3   4   5   6   7
Глава 6. РОСТ И РАЗВИТИЕ РАСТЕНИЙ
Процессы роста и развития растений имеет ряд отличительных особенностей по сравнению с животными организмами. Во-первых, растения способны размножаться вегетативным путем. Во-вторых, наличие мерестематических тканей у растений обеспечивает высокую скорость и способность к регенерации. В-третьих, для обеспечения питательными веществами растения поддерживают рост на протяжении всей жизни.
6.1. Понятие роста и развития. Общие

закономерности роста
Каждый живой организм подвергается постоянным количественным и качественным изменениям, которые прекращаются только при известных условиях периодами покоя.

Рост – это количественные изменения в ходе развития, которые заключаются в необратимом увеличении размеров клетки, органа или целого организма.

Развитие – это качественные изменения компонентов организма, при которых имеющиеся функции преобразуются в другие. Развитие – это изменения, которые происходят в растительном организме в процессе его жизненного цикла. Если этот процесс рассматривать как установление формы, то он называется морфогенезом.

Примером роста может служить разрастание ветвей благодаря размножению и увеличению клеток.

Примерами развития являются образование проростков из семян при прорастании, образование цветка и т. д.

Процесс развития включает в себя целый ряд сложных и очень строго скоординированных химических превращений.

Кривая, характерная для роста всех органов, растений, популяций и т. д. (от сообщества до молекулярного уровня) имеет S-образный, или сигноидный вид (рис. 6.1).

Эту кривую можно разделить на ряд участков:

– начальная лаг-фаза, протяжение которой зависит от внутренних изменений, которые служат для подготовки к росту;

– логарифмическая фаза, или период, когда зависимость логарифма скорости роста от времени описывается прямой;

– фаза постепенного снижения скорости роста;

– фаза, на протяжении которой организм достигает стационарного состояния.



Рис 6.1. S-образная кривая роста:

I – лаг-фаза; II – логарифмическая фаза;

III– снижение скорости роста; IV – стационарное состояние


Протяженность каждой из слагающих S-кривую фаз и ее характер зависит от ряда внутренних и внешних факторов.

На длительность лаг-фазы прорастания семян влияет отсутствие или излишек гормонов, присутствие ингибиторов роста, физиологическая неспелость зародыша, недостаток воды и кислорода, отсутствие оптимальной температуры, световой индукции и др.

Протяженность логарифмической фазы связано с рядом специфических факторов и зависит от особенностей генетической программы развития, закодированной в ядре, градиента фитогормонов, интенсивности транспорта питательных элементов и т. д.

Торможение роста может быть результатом изменения факторов окружающей среды, а также определяться сдвигами, связанными с накоплением ингибиторов и своеобразных белков старения.

Полное торможение роста обычно связывают со старением организма, т. е. с тем периодом, когда скорость синтетических процессов идет на убыль.

Во время завершения роста происходит процесс накопления ингибирующих веществ, растительные органы начинают активно стареть. На последней стадии все растения или отдельные его части прекращают рост и могут впадать в состояние покоя. Эта конечная стадия растения и срок прихода стационарной фазы часто бывает задан наследственностью, но эти характеристики могут в какой-то степени изменяться под воздействием окружающей среды.

Кривые роста свидетельствуют о существовании разных типов физиологической регуляции роста. В период лаг-фазы функционируют механизмы, связанные с образованием ДНК и РНК, синтезом новых ферментов, белков, а также биосинтезом гормонов. В период логарифмической фазы наблюдается активное растяжение клеток, появление новых тканей и органов, увеличение их размеров, т. е. происходят этапы видимого роста. По наклону кривой можно часто довольно успешно судить о генетическом фонде, который определяет ростовой потенциал данного растения, а также определяет, насколько хорошо соответствуют условия потребностям растения.

В качестве критериев роста используют увеличение размеров, количества, объема клеток, сырой и сухой массы, содержание белков или ДНК. Но для измерения роста целого растения трудно найти подходящий масштаб. Так при измерении длины не обращают внимания на ветвление; навряд ли можно точно измерить объем. При определении количества клеток и ДНК не обращают внимания на размеры клетки, определение белка включает и запасные белки, определение массы также включает запасные вещества, а определение сырой массы, кроме всего включает и транспирационные потери и т. д. Поэтому в каждом случае масштаб, который можно использовать для измерения роста целого растения – это специфическая проблема.

Скорость роста побегов составляет в среднем 0,01 мм/мин (1,5 см/день), в тропиках – до 0,07 мм/мин (~ 10 см/день), а у побегов бамбука – 0,2 мм/мин (30 см/день).
^ 6.2. Типы роста у растений
У многоклеточных растений в отличие от животных рост (за исключением ранних стадий развития зародыша) происходит только в определенных участках, которые называются меристемами.

Меристемы – это зоны в растительном организме, где происходит регулярное размножение растительных клеток. Эти зоны расположены апикально, т. е. на вершине растущего органа (в главных и боковых побегах и корнях), базипетально (в листьях и междоузлиях), или интеркалярно, например, над узлами в саломине злаков. Интеркалярная – это вставочная меристема (табл. 6.1).

Между листом и стеблем в пазухах листьев, закладываются пазушные почки. Пазушные почки, которые длительное время не дают побегов, называют спящими; при определенных условиях они пробуждаются и из них развиваются побеги.

^ Таблица 6.1
Типы меристем и их функции


Типы меристем

Местонахождение

Роль

Апикальная

В кончиках корней и побегов

Обеспечивает первичный рост; образует первичное тело растения

Латеральная

В более старых частях растений, лежит параллельно длинной оси органа (пробковый камбий)

Обеспечивает вторичный рост. Васкулярный камбий дает начало вторичным проводящим тканям; образуется перидерма, которая замещает эпидермис и содержит пробку

Интеркалярная

Между участками постоянных тканей, например в узлах многих однодольных

Делает возможным рост в длину в промежуточных участках. Это характерно для растений, у которых апикальные участки повреждаются (объедание животными злаков и т. п.)


Латеральная (камбий) меристема лежит (параллельно) вдоль длинной оси органа (например, пробковый камбий) и обеспечивает утолщение.

Внутренние физиолого-биохимические реакции, обеспечивают координированный ход ростового процесса на всех этапах жизни, определяют механизмы роста. Различают первичные и вторичные механизмы роста.

К первичным механизмам роста относят физиолого-биохимические реакции, которые лежат в основе начальных этапов ростового процесса (лаг-фаза) и фазы ускоренного роста (логарифмическая фаза). К этим же механизмам относят электрофизиологические, гормональные и генетические реакции, которые запускают и поддерживают нормальный ход роста клеток, тканей и органов.

Вторичные механизмы роста – это физиолого-биохимические реакции, которые участвуют в нормальном ходе роста (лог-фаза и фаза замедления роста) и происходят в процессе жизнедеятельности растений. К ним относят корреляции между органами, донор-акцепторные связи, метаболическая координация между ростом и другими физиологическими процессами (фотосинтез, транспорт, запасание веществ, стресс).

Таким образом, чаще всего существуют два типа роста: первичный и вторичный. В результате первичного роста может образоваться целое растение (для большинства однолетних и травянистых двудольных это единственный тип роста). В нем участвует апикальная, а иногда и интерполярная меристемы.

У некоторых растениях за первичным ростом идет вторичный рост, в котором участвуют латеральные меристемы. Он в большей мере характерен для кустарников и деревьев. У ряда травянистых растений наблюдается вторичное утолщение стебля, например, развитие дополнительных проводящих пучков у подсолнечника.

Кроме этого, различают еще диффузионный рост. Это рост во время деления всех клеток.
^ 6.3. Клеточный цикл роста
Основой любого роста является рост клеток. Рост клеток состоит из следующих последовательных процессов: деления, роста протоплазмы, роста растяжением и дифференцировки. Деление клеток и рост протоплазмы происходит в меристеме (эмбриональной зоне) и поэтому могут быть объединены под названием эмбриональный рост.

^ Эмбриональный рост начинается с деления эмбриональной (способной к делению) материнской клетки.

Рост протоплазмы – это увеличение количества протоплазмы в клетке, и таким образом, новообразование живой материи при небольшом увеличении объема. Рост протоплазмы состоит из процессов репликации ДНК и последовательности реакций: ДНК → РНК → фермент (белки) → продукт; процесс включает в себя транспирацию и многочисленные ферментативные реакции. В конусе нарастания рост протоплазмы одной клетки длится в среднем 15–20 час. По причине роста протоплазмы она вырастает приблизительно до размеров материнской клетки.

После окончания роста протоплазмы клетка может переходить к делению, и таким образом, оставаться эмбриональной или она может перейти в фазу растяжения для того, чтобы последовательно превратиться в клетку постоянной ткани. В том случае, если эмбриональная клетка вновь делится, период роста ее протоплазмы ограничен двумя митозами и называется интерфазой.

^ Рост растяжением представляет собой последующее увеличение объема клетки при сильном поступлении воды и образовании вакуолей, но при незначительном увеличении массы протоплазмы.

Рост клетки растяжением происходит очень быстро и включает несколько этапов. За 1 час клетка может увеличиваться в 2 раза. Кроме того, что идет быстрое поступление воды, происходит и новообразование специальных белков.

На первом этапе в клетке, способной к растяжению, происходит два процесса – замедление синтеза компонентов цитоплазмы и медленное образование компонентов клеточной оболочки. На этом этапе также увеличивается интенсивность дыхания, наблюдается активное новообразование фосфолипидов (для этапа характерно отсутствие вакуолей).

На втором этапе под воздействием ИУК происходит размягчение оболочек. Этот процесс связан с активацией деятельности ряда целлюлозо- и пекталитических ферментов, благодаря которым повышается эластичность клеточных оболочек. Одновременно в клетке происходит активное образование вакуолей, повышается активность гидролитических ферментов, вакуоли наполняются сахарами, аминокислотами и другими смотически активными соединениями. Таким образом, вода активно поступает в клетку в результате размягчения клеточной стенки, и формируется большая центральная вакуоль.

Второй этап растяжения клетки обусловлен рядом биохимических реакций, среди которых ведущую роль играет ИУК, запускающая выделение Н+-ионов из цитоплазмы (Н+-помпа). В итоге происходит подкисление клеточных стенок, в которых активируются ферменты типа кислых гидролаз и происходит разрыв кислотолабильных связей. В результате таких разрушений происходит два типа изменений в оболочке – образование просветов и сдвиги углеводных слоев, т. е. своеобразное растяжение углеводного матрикса.

Последний этап клеточного растяжения – остановка этого процесса. Почему клетка растягивается до определенных пределов? Существуют три гипотезы, каждая из которых с одинаковой вероятностью объясняет процесс растяжения.

1. Ауксин активирует не только разрыхление оболочки и разрыв ковалентных связей, но и активирует синтез элементов вторичной клеточной стенки; последняя тормозит растяжение клетки.

2. В клетке происходит синтез предшественников лигнина, которые участвуют в разрушении ауксина и торможении клеточного растяжения.

3. В клетке на последнем этапе растяжения синтезируется в большом количестве этилен – антагонист ауксина и ингибитор клеточного растяжения.

Растянутая клетка с большой центральной вакуолью переходит к следующему этапу жизнедеятельности – дифференцировке. Дифференцировкой называют превращение эмбриональной клетки в специализированную. После окончания роста растяжением отдельные клетки начинают развиваться разными путями. Первый шаг дифференцировки состоит из того, что в одной эмбриональной клетке начинается растяжение, тогда как в это время другая вновь делится, и остается эмбриональной.

Каждое состояние дифференцировки клетки как эмбриональной, так и специализированной характеризуется определенной генной моделью, которая вызывает эту дифференцировку через индукцию специфических ферментов. Дифференцировка – это, другими словами, появление качественных различий между клетками, тканями и органами в процессе развития.

Когда дифференцировку клеток изучают по морфологическим признакам, тогда говорят о структурной дифференцировке. Когда разговор идет о формировании в клетках отличий в составе белков-ферментов, в способности к синтезу запасных или других веществ и других биохимических изменениях, дифференцировку называют биохимической.

Дифференцировка клеток приводит к возникновению как специфической формы, так и специализации выполняемых функций. Различают и физиологическую дифференцировку. К явлениям физиологической дифференцировки относят формирование разницы между корнями и побегом, между вегетативными и репродуктивными фазами жизненного цикла.

Как правило, дифференцированные клетки объединены в ткани, т. е. образуют группы клеток, которые выполняют определенную физиологическую функцию и имеют схожее морфологическое строение, которое обеспечивает реализацию этой функции.

Нужно отметить, что существуют и разные классификации типов дифференцированных клеток, одну из них можно представить в следующем виде:

– паренхимные, которые характеризуются большими размерами, тонкими оболочками, содержанием хлоропластов или запасных веществ;

– проводящие и поддерживающие – все клетки этой группы вытянуты, часть из них сильно лигнифицирована, представлена трахеидами, сосудами и волокнами. Живое содержимое в них почти отсутствует;

– покровные – обычно находятся на поверхности и покрыты водонепроницаемыми веществами (воском, кутином, суберином). К ним относится эпидермис и перидерма;

– репродуктивные, образующиеся в определенные периоды жизненного цикла растений, из которых потом формируются гаметы, необходимые для полового размножения высших растений.

Очень важным вопросом клеточной дифференцировки является вопрос о механизмах, которые лежат в основе этого явления. Начальным этапом дифференцировки является образование физиологической оси с двумя полюсами. Дальнейшая дифференцировка многоклеточного организма определяется дифференцированной реализацией генетической информации во времени и пространстве, которая содержится в генотипе клетки.

Таким образом, в индукции дифференцировки первыми шагами служит возникновение полярности. Полярность индуцируется градиентом какого-либо фактора окружающей среды. Фактор может иметь физическую (свет, сила тяжести, электрическое поле, температура) или химическую (фитогормоны, ионы Са2+ и др.) природу.

Возникшая полярная ось является необходимой предпосылкой для поддержания внутриклеточных градиентов.

В многоклеточном организме значительную роль в дифференцировке играет передача информации между клетками. У растений наиболее изучена гормональная передача информации и в значительно меньшей мере электрофизиологический способ передачи информации. Начавши дифференцироваться, клетки не только изменяются по своей структуре, но и занимают определенное место в ассоциации себе подобных, образуют протканевую структуру.

Соседство клеток одна с другой обеспечивает программу дифференцировки и рост клеточной ассоциации. Контакты растущих клеток в протканевых фрагментах происходят не только за счет поверхностных агентов, но и при участии внутриклеточных компонентов. Большую роль при этом, вероятно, играют микротрубочки, которые состоят из подобного актину белка тубулина.

Сформировав протканевую структуру, клетки начинают свое кооперативное движение: пласт клеток перемещается один относительно другого, образуя первичную ткань.

Дифференцировка клеток во вновь образованной ткани происходит в два этапа. Сначала формируется одна из специализированных клеток, затем возникают ей подобные. Большую роль в процессе тканевой дифференцировки играют фитогормоны.

В растущем органе, каким является, например лист, формирование тканей происходит неодновременно. Прежде всего, клеточное деление заканчивается в эпитеальной и проводящей тканях, затем наступает процесс активного клеточного растяжения и дифференцировки. После этого подобные процессы происходят в мезофилле листа.

Формирование органа, таким образом, происходит за счет последовательной дифференцировки отдельных тканей. Однако, конечный размер органа – это комплексный результат роста его отдельных тканей и клеток, т. е. размер и форма органа предопределяются в меристеме.

Будущая дифференцировка зависит от того, в какой части меристемы находится инициальная клетка. Так, когда меристематическая клетка локализована в органогенной зоне, то из нее образуется группа клеток, которая составляет лист, клетки субапикальной зоны формируют стебель и т. д.

Следовательно, уже в меристематической зоне происходит своеобразный процесс детерминации, в результате которого клеточная система выбирает один из многих возможных путей развития.

Если коротко отметить, то дифференцировка растительных клеток включает в себя индукцию полярности и дифференциальной активности генов, в результате которых клетка детерминируется и приобретает черты специализации. В качестве индукторов дифференцировки, как отмечалось, выступают как физические, так и химические факторы внутренней и внешней среды. Причем каждая клетка непрерывно получает информацию о своем окружении и развивается в соответствии с этой информацией.

Детерминация – это определение пути дифференцировки клетки. При детерминации делается выбор из большого количества потенций (генов, информации) в определенном направлении. Детерминация клетки может быть запрограммирована или возникает под воздействием разных внешних факторов: соседних клеток, гормонов и т. д.

Важную роль в детерминации будущей дифференцировки играет клеточное окружение. Пересадка одной клетки из группы эмбриональных клеток в область со специфическими функциями может полностью изменить будущую программу развития этих клеток. Особенно хорошо эти опыты удаются с зародышами насекомых. Так клетки будущего глаза превращаются в клетки крыла насекомых и т. д.

Растениям принадлежат интенсивные регенерирующие способности. Черенок в определенных условиях способен давать целое растение, но такой же регенерирующей способностью обладает лист (листовой черенок), и, наконец, часть клетки – протопласт. Проходя через ряд промежуточных фаз, протопласты становятся клетками, регенерируя оболочку.

Это связано с уникальной способностью растительной клетки – под влиянием воздействий реализовать принадлежащую ей тотипотентность и давать начало целому организму. Тотипотентной является любая клетка растения, так как она владеет полным генофондом, т. е. всеми возможностями будущего организма. Тотипотентные клетки – это генетически однородные клетки.

Далее следует отметить, что все органы растительного организма взаимосвязаны и влияют на рост друг друга. Влияние одних частей организма на скорость и характер роста других, часто на большие расстояния, называют корреляцией. Корреляция обуславливает упорядоченную взаимозависимость отдельных частей растения. Корреляции можно сравнить с отношениями между клетками, перенесенными на уровень тканей и органов.

Включая в себя дальний транспорт, корреляции связаны с действием гормонов (хотя не каждая корреляция имеет гормональный характер). Когда место образования гормона не совпадает с местом действия, то мы имеем дело с иным типом корреляции. В принципе ускорение роста в зоне растяжения колеоптиля ауксином, который поступает с его верхушки, является простейшим примером корреляции.

Только в редких случаях один гормон имеет решающее значение для корреляции, а чаще всего, необходимо количественное соотношение нескольких гормонов. В полярных, однонаправленных, воздействиях почти всегда участвуют полярно транспортируемый ауксин.

Имеет место как коррелятивная стимуляция так и коррелятивное торможение. В первом случае, растение с более мощной корневой системой благодаря большему поступлению питательных веществ имеет и лучший рост побегов; побег влияет на корень, поставляя ему ауксин, а корень действует на побег при помощи цитокининов и гиббереллинов. Во втором, размер плодов уменьшается с увеличением их количества; апикальное доминирование – верхушечный побег тормозит развитие боковых; удаление верхушечного побега приводит к развитию боковой почки, т. е. происходит разветвление стебля.
^ 6.4. Этапы онтогенеза
Рост растений – сложный процесс, в его основе лежат такие фундаментальные явления как ритмичность, полярность, дифференциация, раздражимость, корреляция. Все эти процессы являются общими для онтогенеза всех живых организмов.

Онтогенез – индивидуальное развитие организма от зиготы (или вегетативного зачатка) до природной смерти.

Благодаря активной деятельности меристем и фотосинтетической активности листьев зеленое растение приобретает ряд тех своеобразных черт, которые характеризуют его рост. Последний в процессе онтогенеза растения наблюдается на протяжении основных этапов его жизненного цикла.

Этапность онтогенеза – это морфологическое и функциональное разветвление онтогенеза, которое проявляется в изменении характера роста, дифференциации и функциональной активности организма. Таких этапов выделяют пять: эмбриональный, ювенильный, спелость, размножение и старость.

^ Эмбриональный этап у растений, размножающихся семенами – это период формирования зародыша и семян от оплодотворения яйцеклетки до начала прорастания семян; для вегетативного размножающихся растений – период формирования почек в органах вегетативного размножения от возникновения почки до начала ее прорастания. В это время ростовые процессы находятся в скрытой фазе или фазе подготовки. Происходит синтез основных метаболитов, ядра, образование ростовых гормонов.

^ Ювенильный этап – период заложения, роста и развития вегетативных органов от прорастания семян до появления способности к образованию репродуктивных органов. В начале ювенильного периода растения не переходят к образованию репродуктивных органов даже в оптимальных условиях; потом они постепенно приобретают способность к репродукции, т. е. это этап доминирования ростовых процессов. В это же время растение и его органы активно увеличиваются в размерах, происходит новообразование отдельных элементов растения (клеток, тканей, органов). Многие авторы отмечают взаимодействие фитогормонов в период интенсивного роста растительного организма.

Спелость (зрелость) – период цветения в семенных или репродукции в вегетативно размножаемых растениях, от появления первичных зачатков репродуктивных органов до формирования бутонов, цветков, клубней, луковиц и других органов, а также образование новых зародышей. В этот период процесс роста сопряжен с элементами генеративного развития. Совместно с ростом вегетативных частей растения происходит детерминация генеративных органов – приобретение клеткой, тканью, органом или организмом состояния готовности к реализации определенных наследственных свойств. Детерминация развития характеризуется готовностью к развитию по определенному типу. Другими словами, растение переходит от этапа вегетативного размножения к этапу генеративного, т. е. к этапу спелости.

Следующий этап – размножение – это период плодоношения, роста, развития и поспевания плодов и семян в растениях, размножающихся семенами; или поспевание клубней, луковиц и др. органов у вегетативно размножающихся растений. Во время этого этапа доминируют процессы роста генеративных органов, увеличение размеров семян или других органов. В этот период совместно с гормонами выявляются и доминируют природные ингибиторы.

Последний этап – старость – период от полного прекращения плодоношения до природного отмирания растений. Рост в этом случае происходит очень редко (поросль из глубоко спящих почек, жирующие побеги). Замедляют старение факторы, стимулирующие синтез РНК и белков, и в первую очередь это цитокинины, а у некоторых растений также гиббереллины.

Необходимо отметить, что этапы онтогенеза – это неизолированные периоды развития, а взаимопереходящие одна в другую фазы, в основе которых лежат медленно идущие возрастные изменения, т. е. изменения организма и его отдельных частей, обусловленные возрастом, и идущие на протяжении всей жизни растений. Возрастные изменения клеток, тканей и органов зависят от присущего им роста, общего возраста организма, а также от характера взаимосвязей с другими частями растения.

Отметим, что в онтогенезе наблюдаются этапы, как интенсивного роста, так и его замедление (покой).
^ 6.5. Гормональная регуляция роста
Кроме воды и минеральных веществ, поступаемых из почвы, и углеводов, образующихся в процессе фотосинтеза, которые необходимы в качестве источника энергии и строительных белков протоплазмы, растительная клетка для оптимального роста требует еще и некоторые другие химические соединения. К ним, в частности, относятся органические соединения, которые называются гормонами. Потребность в количестве гормонов обычно очень малая, и в большинстве случаев, гормоны синтезируются в достаточных количествах самим растением.

Любой гормон представляет собой вещество, образуемое в малых количествах в одной части организма и транспортируемые затем в другую часть растения, где он оказывает соответствующее действие. Расстояние, на которое транспортируется гормон, может быть относительно большим, например от корня до листа, от последнего к почке, может быть и меньшим – от апикальной меристемы до находящихся ниже клеток, или совсем малым – в пределах одной клетки.

У высших растений содержатся несколько важных классов регулирующих рост гормонов, основными из которых являются: ауксин, гиббереллины, цитокинины, абсцизовая кислота и этилен.

Ауксин. В 30-х гг. ХХ столетия Ф. Венту удалось подтвердить мысль Ч. Дарвина, что в верхушках колеоптилей злаков действительно образуется значительное количество способного к диффузии вещества, которое контролирует рост нижележащих зон. Это вещество назвали ауксином (от греческого слова auxein – расти). Большой вклад в изучение механизма действия ауксина внес Н. Г. Холодный.

Ауксин синтезируется растущими апикальными зонами стеблей, в том числе молодыми листьями. От апекса ауксин мигрирует в зону растяжения, где он специфически влияет на рост растяжением.

Было установлено, что природный ауксин представляет собой простое соединение – индолил-3-уксусную кислоту (ИУК):





которая синтезируется в растениях путем ферментативного превращения аминокислоты – триптофана. Триптофан образуется из шикимовой кислоты через ряд реакций:
Шикимовая кислота → индол → серин → L-триптофан
Сам синтез ИУК из триптофана довольно сложный процесс и имеет свои особенности в отдельных растениях (рис. 6.2). Образованная из триптофана ИУК, проходит дальнейшее превращение в растениях: обратимое связывание ИУК в неактивные комплексы с белками, аминокислотами, углеводами; необратимое окисление молекулы ИУК под воздействием ферментов типа ауксиноксидазы.



Рис. 6.2. Биосинтез индолил-3-уксусной кислоты


Транспорт ИУК происходит полярно со скоростью 10–15 мм/ч от вершины побегов к корням. Механизм полярного транспорта следующий: в апикальный конец клетки ИУК проникает пассивно совместно с Н+, а в базальном конце активно секретируется через клеточную мембрану.

Физиологическое действие ауксина сложное. Разные ткани отвечают на действие ауксина увеличением роста, которое обусловлено стимуляцией растяжения клеток (рис. 6.3).



Роль ауксина в стимуляции опадания листьев и цветов связана с заметным понижением его содержания в листьях. Это приводит к старению листьев. Стареющие ткани продуцируют этилен, который действует на отделительную зону (зона опадания).

Сам же ауксин задерживает опадание листа и цветов. Имеются доказательства, что ауксин, кроме участия в растяжении и опадании листьев, принимает также участие в процессах клеточного деления. Вероятно, ауксины стимулируют камбиальную активность. Считают, что ИУК участвует в дифференциации сосудистой ткани в период начала ростового процесса. Ауксин, вероятно, принимает участие в образовании боковых корней. Превращение завязи в плод – это еще один контролируемый ауксином процесс.

Первостепенную роль играет ауксин в ростовых движениях – тропизмах и настиях (теория гормональной регуляции тропизмов Холодного – Вента).

В основе действия ауксинов, как считают, существуют два механизма:

– быстрое влияние ауксинов на мембранную систему, где за счет энергии АТФ увеличивается транспорт водородных ионов из цитоплазмы в клеточную оболочку и ускоряется размягчение клеточной оболочки;

– относительно медленное влияние ауксинов через геномную систему на синтез белков, определяемых рост клеток.

Наличие обоих механизмов весьма вероятно, поскольку ауксин не только вызывает экскрецию протонов, но и изменяет микроструктуру цитоплазмы (микротрубочки).

Гиббереллины. Японский исследователь Е. Курасава в 1926 г. установил, что если питательную (культуральную) жидкость, на которой рос гриб гибберелла, нанести на проростки риса, то начинается активное растяжение стебля. По названию гриба выделенное из среды вещество было названо гибберелловой кислотой. Так был выделен почти одновременно с ауксином еще один класс гормонов – гиббереллинов.

В 1954 г. англичанин П. Кросс идентифицировал их структуру. Гиббереллины поздней были выделены из высших растений из неспелых семян:





Гиббереллины – фитогормоны, преимущественно класса тетрациклических дитерпиноидов. Все гиббереллины – карбоновые кислоты, поэтому их называют гибберелловыми кислотами. В настоящее время известно более 110 разных гиббереллинов (ГК), многие из которых не обладают физиологической активностью в растениях.

Биосинтетическим предшественником гиббереллинов служит энт-каурен. Гиббереллины классифицируются по числу углеродных атомов на С19- и С20-гиббереллины.

Биологическая активность ГК возникает только на последнем этапе биосинтеза. Предшественники ГК гормональной активностью не обладают. ГК в растениях подвергаются гликозидированию и связыванию с белками. В общем виде синтез ГК представлен на рис. 6.4.
Мевалонат → Гераниол → Гераниол-пирофосфат → каурен →
→ кауренол → кауреновая кислота → С20- и С19-гиббереллины
Рис. 6.4. Схема синтеза гиббереллинов
ГК синтезируются главным образом в корнях и листьях. Транспорт их осуществляется пассивно с ксилемным и флоэмным током.

ГК при нанесении на некоторые растения вызывают очень сильное удлинение стебля, а в ряде случаев и уменьшение листовой поверхности. Самое яркое проявление их действия – быстрая стимуляция удлинения цветоножки (стрелкование) и во многих случаях стимуляция цветения длиннодневных растений. У короткодневных растений ГК, вероятно, оказывают обратный эффект на цветение. Место действия ГК – апикальная и интерколярная меристемы.

Обработка ГК выводит семена и клубни некоторых растений из состояния покоя. Экзогенно введенный ГК снимает у двухгодичных растений необходимость в яровизации, стратификации у тех семян, для которых стратификация необходима. На айлероновых слоях эндоспермы зерновок ячменя показано, что под воздействием ГК индуцируется синтез матричных РНК, которые кодируют образование α-амилазы и других гидролаз, а также ГА влияет на синтез мембран ЭР.

ГК вызывают партенокарпию: для этого цветки необходимо опрыскивать раствором ГК. Ауксин тоже может вызывать партенокарпию, но ГК более активны. В тканях, обработанных ГК, как правило, увеличивается содержание ИУК. Схема основных физиологических функций гиббереллинов выглядит следующим образом (рис. 6.5).



Считают, что физиологической основой карликовости большинства растений является нарушение гиббереллового обмена, который приводит к недостатку эндогенных гиббереллинов.

Ауксины и гиббереллины представляют два сильно действующих класса регуляторов. Однако они не способны регулировать ход ростового процесса в онтогенезе. Ни один из них не способен повлиять на процесс зеленения изолированных листьев, закладку почек в культуре тканей.

Этими свойствами обладают цитокинины, получившие свое название из-за способности стимулировать цитокинез (клеточное деление). Учение о цитокининах начинается с открытия полуискусственного продукта – кинетина





который образуется из ДНК при кислотном гидролизе. Природный цитокинин был идентифицирован как зеатин





и получен он из неспелых зерновок кукурузы в начале семидесятых годов ХХ в.

В настоящее время цитокинин обнаружен в некоторых бактериях, водорослях, грибах и насекомых.

Сегодня так суммируют представления о биосинтезе цитокининов (рис. 6.6).



Рис. 6.6. Схема синтеза цитокининов

По существующим данным в бактериях осуществляется только путь 2, а у растений – оба пути.

Основное место синтеза цитокининов – корни; однако в последнее время получены данные о том, что синтез цитокининов может происходить и в семенах (семена гороха).

Из корней цитокинины пассивно транспортируются в наземные органы по ксилеме.

Известно множество физиологических эффектов цитокининов, из которых наиболее значимы (рис. 6.7):

  • стимуляция клеточного деления и дифференциации;

  • задержка процессов старения.




Роль цитокининов в процессах клеточных делений связана со стимуляцией репликации ДНК и регуляцией переходов из предшествующих фаз в фазу митоза. Имеются данные о действии цитокинина на транспорт K+, Н+, Са2+.

Этилен (СН2=СН) – гормон старения (гормональный фактор газоподобного типа). Давно известно, что одно гнилое яблоко в бочке вызывает порчу всех остальных. Как оказалось, в гнилом яблоке вырабатывается летучее вещество – этилен, вызывающее разрушительное действие в здоровых плодах.

Впервые физиологический эффект этилена на растения был описан Д. А. Нелюбовым в 1901 г. Он выявил, что в этиолированных проростках (гороха) этилен вызывает тройную реакцию стебля: ингибирование растяжения, утолщение и горизонтальную ориентацию. В 20-х гг. было показано, что этилен способен ускорять спелость плодов и регулировать процесс старения у растений. Тот факт, что действие этилена можно снять повышенной концентрацией СО2 в окружающей среде, лежит в основе практического приема хранения яблок и других плодов. Этилен вызывает образование апикального изгиба во многих этиолированных проростках; действие света на выпрямление изгиба связано с тем, что свет ингибирует образование этилена. Этилен может также влиять на геотропизм и другие опосредованные ауксином реакции (например, подавление роста боковых почек).

Этилен тормозит полярный транспорт ауксина, усиливает процессы старения, опадения листьев и плодов, устраняет апикальное доминирование, а также ускоряет поспевание плодов (рис. 6.8).



Образуется этилен из серосодержащей аминокислоты метионина, который превращается в S-аденозилметионин. Затем с помощью фермента АЦК-синтазы синтезируются 1-амино-циклопропан-1-карбоновая кислота (АЦК) и 5/-метилтиоаденазин. Последний этап синтеза этилена происходит в присутствии кислорода и катализируется ферментом АЦК-оксидазой. Постоянное пополнение L-метионина происходит в результате превращения 5/-метилтиоаденазина через последовательное образование 5/-метилтиорибозы, 5/-метилрибозо-1-фосфат и α-кето-γ-метилтиомасляной кислоты (цикл Янга) (рис.6.9).




Рис. 6.9. Схема биосинтеза этилена


Абсцизовая кислота (АБК) – природный гормональный ингибитор роста терпеноидной природы.





Название АБК получила в связи с ее способностью вызывать опадение черешков, листьев, завязей и плодов (от английского abscission – отнятие, ампутация).

В 1955 г. из старых листьев фасоли и некоторых древесных растений выделили вещества, которые ускоряли опадение листьев. Была высказана догадка, что опадение листьев регулируется не только эндогенными ауксинам и этиленам, но и другими веществами, которые образуются в спелых листьях. Скоро (1961 г.) подобное вещество было найдено и в молодых плодах хлопчатника. Последующие исследования показали, что веществом, ускоряющим опадение, во всех случаях была АБК. Это соединение стимулировало опадение листьев у березы, клена и др.




Рис. 6.10. Схема синтеза и метаболического превращения абсцизовой кислоты


Молекулярная структура АБК была установлена в 1963 г. На основе ее структуры сделано предположение, что ее синтез, как и синтез гиббереллинов, идет по пути образования изопреноидов. Изопентенилпирофосфат является тем структурным элементом, из которого образуется АБК. Пути биосинтеза, распада и связывания АБК, выявленные с помощью мутантов, выглядят следующим образом (рис. 6.10).

Катаболизм АБК идет по пути коньюгации и образования глюкозидов, а также по пути деградации с образованием соответствующих кислот (фазеевой, оксиабсцизовой и др. кислот).

АБК синтезируется главным образом в листьях, а также в корневом чехлике. Перемещение АБК в растениях наблюдается как в базипетальном, так и в акропетальном направлениях в составе ксилемного и флоэмного соков.

К
ак мы уже в начале отметили, в большинстве случаев, АБК тормозит рост растений. Этот гормон в ряде случаев выступает как антагонист ИУК, цитокинина и гиббереллинов. АБК ингибирует прорастание семян и рост почек, содействует опадению листьев, которое связано с их старением. АБК ускоряет распад нуклеиновых кислот, белков и хлорофилла. В некоторых случаях АБК является активатором: она стимулирует развитие партенокарпии у розы, удлинение гипокотеля огурца, образование корней у черенков фасоли (рис. 6.11).

В высоких количествах АБК образуется при стрессах (при действии разных неблагоприятных факторов внешней среды). Особенно много ее образуется при водном стрессе в листьях. В этих случаях она вызывает отток ионов K+ из замыкающих клеток, в результате чего устьица закрывается и тем самым предотвращается опасность высыхания. Действие АБК в этом случае обусловлено ее влияние на функционирование Н+-помпы. АБК может выполнять и сигнальную роль при водном диффеците .

Таким образом, АБК является ингибитором широкого действия, который влияет на процессы покоя, роста, движения устьиц, геотропизма, поступления веществ в клетку. АБК участвует в стрессовых реакциях растений.

К группе фитогормонов относят жасмоновую и салициловую кислоты, а также обнаруженные в растениях, в последние годы, другие гормональные соединения.

Фузикокцин. В 70-е годы Г. Муровцев (СССР) и другие показали, что к природным регуляторам роста следует отнести и фузикокцин. Фузикокцин был открыт в 1964 г. Баллио (Италия) как токсин, выделяемый патогенным грибом Phusicoccum amygdale. Фузикокцин широко распространен в природе. Сейчас известно более 15 соединений этой группы. Кроме грибов, они содержится в клетках водорослей, высших растений (моховидные, папоротникообразные, цветковые) и даже животных.

По химической природе фузикокцин относится к терпеноидам и у цветковых растений представляет собой дитерпен – С36 Н56 О12. В клетках высших растений его содержится 10-5 – 10-8 г/кг сырой массы.

По своему действию фузикокцин похож на ауксин. Он стимулирует растяжение клеток корней, стеблей, колеоптилей, листьев, причем даже активнее, чем ИУК, а также прорастание семян (например, пшеницы). Фузикокцин вызывает открывание устьиц в присутствии и отсутствии света (антагонист АБК). Это связано с активацией протонной АТФ-азы и калиевых каналов. Кроме того, фузикокцин стимулирует транспорт кальция, хлора, глюкозы, аминокислот в клетку, а также дыхание и корнеобразование.

Фузикокцин обладает антистрессовыми функциями. Он повышает всхожесть семян при повышенных и пониженных температурах, избыточном увлажнении, при засолении. Замачивание семян в растворе фузикокцина, а также опрыскивание им в фазу кущения озимых пшеницы, ржи и ячменя повышает их морозоустойчивость благодаря лучшему развитию фотосинтетического аппарата у обработанных растений и накоплению ими большего количества в клетках сахаров. Фузикокцин защищает растения риса при засолении, повышает устойчивость клубней картофеля к некоторым заболеваниям.

^ Жасмоновая кислота (ЖК) и ее метиловый эфир





  1   2   3   4   5   6   7

Похожие:

Рост и развитие растений iconРост и развитие растений. Понятие об онтогенезе, росте и развитии...
Онтогенез является последовательной реализацией наследственной генетической программы развития организма в конкретных условиях внешней...
Рост и развитие растений iconНаумов М. М. Рост растений и биологическое время. / Вісник одеку. 2005. Вип С. 72 78
Наумов М. М. Рост растений и биологическое время. / Вісник одеку. 2005. Вип – С. 72 – 78
Рост и развитие растений iconКраткая характеристика отделов царства растений
Царство растений условно подразделяют на низшие и высшие растения. У низших растений органы полового и бесполого размножения обычно...
Рост и развитие растений iconОсуществляет внекорневую (листовую) подкормку растений, подавляет...
И для полива и внекорневой подкормки рассады и комнатных растений (биосмесь №1)
Рост и развитие растений iconДвижение к успеху, психологический рост и духовное развитие

Рост и развитие растений iconНовую экскурсию «Загадки комнатных растений»
Всех желающих приглашаем на экскурсию «Загадки комнатных растений», на которой вы узнаете о происхождении «домашней флоры» и её великолепном...
Рост и развитие растений iconЭкономический рост
Экономический рост часто приводит к социальному прогрессу. Он означает рост прибавочного продукта в стране, а следовательно, и прибыли,...
Рост и развитие растений iconОнтогенетические колебания биологического времени растений: яровые и озимые формы
Льные, оптимальные и максимальные значения факторов внешней среды: прихода фар, температуры воздуха, влажности почвы. Основное различие...
Рост и развитие растений iconОлег Алексеевич Коровкин Анатомия и морфология высших растений
Велико значение этих наук в исследованиях влияния факторов внешней среды на развитие растительного организма
Рост и развитие растений icon1. Биология как наука, ее достижения, связи с другими науками. Методы...
Царство растений, его отличия от других царств живой природы. Объясните, какая группа растений занимает в настоящее время господствующее...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница