К. К. Хренов и д-р техн наук, проф


НазваниеК. К. Хренов и д-р техн наук, проф
страница1/12
Дата публикации26.03.2013
Размер2.13 Mb.
ТипКнига
userdocs.ru > Физика > Книга
  1   2   3   4   5   6   7   8   9   ...   12

ББК 34,57 Ю92 УДК 621.7.044.4

Предисловие



РЕЦЕНЗЕНТЫ:

член-корр. АН СССР, акад, АН УССР, д-р техн. наук проф. К. К. Хренов и д-р техн. наук, проф, И. С. Лискер

Научный редактор канд. физ,-мат. наук В, И. Иванов

Л. А. Юткин

Ю92 Электрогидравлический эффект и его применение в промышленности. Л.: Машиностроение, Ленингр. отд-ние, 1986.— 253 с., ил.

В пер,: 1 р, 20 к.

В книге крупного изобретателя, ученого, лауреата Государственной премии УССР, основателя нового направления в науке и технике — электрогидравлики в доступной форме изложены физические основы электрогидравлического эффекта. Рассмотрены схемы н оборудование электрогидравлических установок. Приведены методы управления разрядом и повышения КПД эффекта, принципиально новые конструкции установок и устройств для обработки машиностроительных изделий. Описаны электрогидравлические устройства, используемые для горного, химического, сельскохозяйственного и транспортного машиностроения.

Книга предназначена для инженерно-технических работников, занимающихся разработкой и эксплуатацией электрогидравлического оборудования, ,

ББК 34.57 6П4.4


КБ-20-9-1985


Ю


Издательство «Машиностроение», 1986 г.


2704050000-922 038(01)-86

При создании внутри объема жидкости специально сформированного импульсного высоковольтного электрического разряда в зоне последнего развиваются сверхвысокие давления, которые можно широко использовать в практических целях,— так, впервые в 1950 г. Л. А. Юткиным был сформулирован предложенный им новый способ трансформации электрической энергии в механическую, названный автором электрогидравлическим эффектом (ЭГЭ).

Электрогидравлический эффект с первых дней его открытия был и остается постоянным источником рождения множества прогрессивных технологических процессов, которые сейчас уже широко применяются во всем мире. Этим обусловливаются его непреходящее значение и все возрастающий интерес, проявляемый к нему в самых различных отраслях науки, техники и народного хозяйства.

Последние 30 лет жизни Л. А. Юткин активно и плодотворно работал в области электрогидравлики. За этот период им были разработаны теоретические основы явления, определены методы управления процессом, значительно расширяющие возможности и обеспечивающие высокий КПД электрогидравлической обработки материалов, было предложено более 200 способов и устройств практического применения ЭГЭ, получено 140 авторских свидетельств на изобретения, издано 50 публикаций по электрогидравлике. Под его руководством были разработаны принципиальные конструкции промышленных установок различного назначения, проведены поисковые работы, подготовлены к внедрению и частично внедрены устройства и технологические процессы, позволяющие эффективно использовать электрогидравлический эффект во многих областях народного хозяйства.

Президиум Академии наук УССР в июне 1982 г., определяя значение научной деятельности Л. А. Юткина, отметил, что изобретение им способа получения высоких и сверхвысоких давлений (а. с. 105011, СССР) легло в основу нового промышленного способа трансформации электрической энергии в механическую, нового электрогидравлического способа обработки материалов и практического использования ЭГЭ (а. с. 121053,

СССР). Л. А. Юткин являлся ведущим специалистом в разработке теории ЭГЭ. Посмертно Л. А. Юткин был удостоен звания лауреата Государственной премии УССР за 1981 год,

В книге отражены основные результаты научной, изобретательской и инженерной деятельности Л. А. Юткина. Большинство материалов публикуется впервые. Книга подготовлена к изданию основным соавтором и правопреемником Л. И. Гольцовой.

Ограниченный объем книги не позволил достаточно полно изложить все основные разработки автора.

Сегодня, по данным ГКНТ СССР, внедрение различных электрогидравлических машин и технологических процессов приносит нашей стране ежегодно десятки миллионов рублей экономии. Однако широкое практическое освоение электрогидравлики еще только начинается. Опубликование книги, несомненно, будет способствовать ускорению внедрения электрогидравлического эффекта во все отрасли народного хозяйства.

Все отзывы и пожелания просьба направлять по адресу: 191065, Ленинград, ул. Дзержинского, 10, ЛО изд-ва «Машиностроение».

Введение

Впервые заинтересовавшись искровыми электрическими разрядами в воде в 1933 году, автор в дальнейшем целиком посвятил себя решению проблемы получения с помощью электрического разряда эффективного гидравлического удара. В конце 1930-х годов автором, был в основном сформулирован и кардинальный для всей электрогидравлики принцип получения так называемых сверхдлинных разрядов. В 1948 г. появилась возможность основательно заняться изучением проблемы, а это привело к патентованию первого и основополагающего изобретения в области электрогидравлики — «Способа получения высоких и сверхвысоких давлений», т. е. способа получения электрогидравлического эффекта [14].

Но электрогидравлика не родилась из ничего и имеет своих предшественников. Опыты с искровыми разрядами в жидкости проводились учеными еще в XVIII веке. Так, в 1766 г. американский естествоиспытатель Т. Лейн в своем письме, адресованном Б. Франклину, содержавшем описание устройства и работы изобретенного им электрометра, в качестве доказательства того, что его прибор действительно измеряет количество, а не какие-то особые качества электричества, писал, что нм ставились разнообразные опыты с разрядами, содержащими различные количества электричества, причем разряды эти осуществлялись им не только в воздухе, но и в воде и других жидкостях [11].

Из описания опытов и работы прибора, изобретенного Лейном, можно понять, что в его опытах действительно возникали искровые разряды в воде длиной в несколько миллиметров с достаточно крутым фронтом и высоким поэтому механическим КПД. Опыты Лейна поражают своей простотой и'свежестью мысли. Однако подлинный смысл и огромное значение наблюдаемых в опытах явлений остались совершенно незамеченными и непонятыми ни самим Т, Лейном, ни Б.'Франклином, ни Д. Пристли, повторившим опыты Лейна в 1769 г. [12], ни многими другими учеными, знавшими об их работах. Не случайно поэтому об опытах Т. Лейна и Д. Пристли впервые вспомнили лишь 200 лет спустя — после опубликования наших первых работ, когда вся электрогидравлика как наука практически уже сформировалась.


В литературе по электрогидравлике иногда упоминают и другие работы, заслуживающие самой высокой оценки, но не имеющие прямого отношения к электрогидравлике. Одной из таких работ была статья Г. И. Покровского и В. А. Ямпольского «Электрогидродинамическая аналогия кумуляции» [2]. Однако уже само название «е говорит о полном несходстве с содержанием и смыслом работ автора. В книге Г. И. Покровского, изданной в 1962 г. [1], подчеркивается наш приоритет на открытие электрогидравлического эффекта. Упоминалось также и изобретение И. В. Федорова «Способ и приспособление для дезинфекции и стерилизации с помощью токов высокой частоты» [13]. Однако в этой работе отсутствуют те основные отличительные признаки, которые лежат в основе осуществления электрогидравлического эффекта — укорочение фронта и длительности электрического импульса. В схеме И. В. Федорова нет формирующего искрового промежутка — обострителя импульса, который позволяет перейти к напряжениям, гораздо большим пробивных для рабочего промежутка, и поэтому устройство, изобретенное И. В. Федоровым, фактически является искровым источником звука и не может быть источником получения электрогидравлического эффекта.

Работы предшественников электрогидравлики завершились в 1948 г. опубликованием статьи Ф.'Фрюнгеля «К механическому КПД искры в жидкостях» [10]. Не сделав ни одного практического вывода и определив найденный им механический КПД разряда в 1 %, Ф- Фрюнгель затем надолго отошел от изучения подобных разрядов, снова занявшись ими уже только после опубликования работ автора.

Причин, по которым многие исследователи прошли мимо огромных практических возможностей нового физического явления, очень много. В основе их общей неудачи, очевидно, лежит отсутствие изобретательского, практического взгляда на изучаемые "явления, а также и отсутствие общественной потребности в использовании сверхвысоких гидравлических давлений.

Отдавая дань уважения исследованиям наших предшественников, нельзя не признать, что 'от Лейна и до Фрюнгеля науке было известно только явление электрического разряда в жидкости как таковое, без каких-либо указаний на то, что миллиметровый разряд в жидкости является прообразом нового промышленного способа трансформации электрической энергии в механическую и может быть широко использован в самых различных областях науки и техники.

Дальнейшие работы автора позволили расширить и углубить теоретические представления о природе электрогидравлического эффекта, определить ряд методов и приемов, обеспечивающих высокий КПД работающих на этом принципе машин и механизмов, предложить более двухсот способов и устройств применения электрогидравлического эффекта, многие из которых уже внедрены на практике.

По опубликованным данным, сотни установок для электрогидравлической обработки металлов самого различного назначения уже работают за рубежом, где наибольшее развитие получила электрогидравлическая штамповка. В СССР наиболее широко используются установки для электрогидравлической очистки литья. Десятки серийно выпускаемых на опытном заводе ПКБ электрогидравлики АН УССР (г. Николаев) и на заводе Амурлитмаш (г. Комсомольск-на-Амуре) электрогидравлических установок для очистки литья ежегодно вступают в строй действующих. Ряд таких установок поставляются на экспорт. Проданы лицензии на изготовление и поставку электрогидравлических установок в Швецию, Испанию, Венгрию, Японию. В различных отраслях промышленности СССР работает также более 140 электрогидравлических прессов, десятки электрогидравлических установок для развальцовки трубок теплообменных аппаратов, электрогидравлические дробилки различных модификаций, электрогидравлические установки для разрушения негабаритов и др.

По данным ГКНТ СССР, только за период с 1971 по 1975 гг. фактический экономический эффект от применения электрогидравлического эффекта в народном хозяйстве СССР составил 23 млн. руб. Внедрение различных электрогидравлических технологий и оборудования имеет самые широкие перспективы и в будущем.
Глава 1

^ Сущность и особенности электрогидравлического эффекта

1.1. Сущность электрогидравлического эффекта

Электрогидравлический эффект (ЭГЭ) — новый промышлен-' ный способ преобразования электрической энергии в механическую, совершающийся без посредства промежуточных механических звеньев, с высоким КПД. Сущность этого способа состоит в том, что при осуществлении внутри объема жидкости, находящейся в открытом или закрытом сосуде, специально сформированного импульсного электрического (искрового, кистевого и других форм) разряда вокруг зоны его образования возникают сверхвысокие гидравлические давления, способные совершать полезную механическую работу и сопровождающиеся комплексом физических и химических явлений [7, 14].

В основе электрогидравлического эффекта лежит ранее неизвестное явление резкого увеличения гидравлического и гидроди-• намического эффектов и амплитуды ударного действия при осуществлении импульсного электрического разряда в ионопро-водящей жидкости при условии максимального укорочения длительности импульса, максимально крутом фронте импульса и форме импульса, близкой к апериодической.

Для электрогидравлического эффекта характерен режим выделения энергии на активном сопротивлении контура, близком к критическому, т. е. когда 1/С2/4/,, где С — емкость конденсатора, К и 1^ — активное сопротивление и индуктивность контура. Отсюда следует, что основными факторами, определяющими возникновение электрогидравлического эффекта, являются амплитуда, крутизна фронта, форма и длительность электрического импульса тока. Длительность импульса тока измеряется в микросекундах, поэтому мгновенная мощность импульса тока может достигать сотен тысяч киловатт. Крутизна фронта . импульса тока определяет скорость расширения канала разряда. При подаче напряжения на разрядные электроды в несколько десятков киловольт амплитуда тока.в импульсе достигает десятков тысяч ампер. Все это обусловливает резкое и значительное возрастание давления в жидкости, вызывающее в свою очередь мощное механическое действие разряда.

10

Осуществление электрогидравлического эффекта связано с относительно медленным накоплением энергии в источнике питания и практически мгновенным ее выделением в жидкой среде. Основными действующими факторами электрогидравлического эффекта являются высокие и сверхвысокие импульсные гидравлические давления, приводящие к появлению ударных волн со звуковой и сверхзвуковой скоростями; значительные импульсные перемещения объемов жидкости, совершающиеся со скоростями, достигающими сотен метров в секунду; мощные импульсно возникающие кавитационные процессы, способные охватить относительно большие объемы жидкости; инфра- и ультразвуковые излучения; механические резонансные явления с амплитудами, позволяющими осуществлять взаимное отслаивание друг от друга многокомпонентных твердых тел; мощные электромагнитные поля (десятки тысяч эрстед); интенсивные импульсные световые, тепловые, ультрафиолетовые, а также рентгеновские излучения; импульсные гамма- и (при очень больших энергиях импульса) нейтронное излучения; многократная ионизация соединений и элементов, содержащихся в жидкости.

Все эти факторы позволяют оказывать на жидкость и объекты, помещенные в нее, весьма разнообразные физические и химиче- . ские воздействия [19]. Так, ударные перемещения жидкости, возникающие при развитии и схлопывании кавитационных полостей, способны разрушать неметаллические материалы и вызывать пластические деформации металлических объектов, помещенных вблизи зоны разряда. Мощные инфра- и ультразвуковые колебания, сопровождающие электрогидравлический эффект, дополнительно диспергируют уже измельченные материалы, вызывают резонансное разрушение крупных объектов на отдельные кристаллические частицы, осуществляют интенсивные химические процессы синтеза, полимеризации, обрыва сорбционных и химических связей. Электромагнитные поля разряда также оказывают мощное влияние как на сам разряд, так и на ионные процессы, протекающие в окружающей его жидкости. Под их влиянием могут происходить разнообразные физические и химические изменения в обрабатываемом материале.

Понятие жидкости как среды для возникновения электрогидравлических ударов должно быть расширено на все эластичные и даже твердые (например, сыпучие) материалы.

Форма разряда, вызывающая возникновение импульсных давлений, может быть самой разнообразной: искровой, кистевой, совсем без кистей (так называемый импульсный электрический ветер).

Основой, обеспечивающей многообразные технологические возможности электрогидравлического, эффекта, является метод получения так называемых сверхдлинных искровых разрядов в проводящих жидкостях [4, 7]. Электрогидравлический эффект может быть получен и в результате предложенного нами метода

11
«теплового взрыва» [23], при котором искровой разряд между электродами, помещенными в жидкость, заменяется электрическим тепловым взрывом проводящего ток элемента, замыкающего электроды. Использование этого метода позволяет распространить область электрогидравлической обработки на высокотемпературные среды, в том числе на плазму и расплавы солей и металлов. Высокий КПД электрогидравлического эффекта, а также уникальные возможности электрогидравлического воздействия являются основой для широкого применения электрогидравлического эффекта во всех областях народного хозяйства,
  1   2   3   4   5   6   7   8   9   ...   12

Похожие:

К. К. Хренов и д-р техн наук, проф iconМагистральные трубопроводы
Южниигипрогаза (И. И. Панков и Н. Н. Желудков), Государственного газового надзора СССР р. Г. Торопова), вниигаза Мингазпрома (кандидаты...
К. К. Хренов и д-р техн наук, проф iconТиражування та розповсюдження без офіційного дозволу Держпожбезпеки заборонено
Укрндіпб) мвс україни (канд техн наук Откідач М. Я.,  Нехаєв В. В. – керівник розробки,        Сокол В. Г. – відповідальний виконавець...
К. К. Хренов и д-р техн наук, проф iconЕ. М. Перепонова ), ниипг гугк (канд техн наук
Работаны цнииомтп госстроя СССР (кандидаты техн наук В. С. Сытник, С. Е. Чакулаев) с участием нииосп им. Н. М. Герсеванова Госстроя...
К. К. Хренов и д-р техн наук, проф iconАвтомобильные дороги
Минавтодора рсфср (д-р техн наук А. П. Васильев; кандидаты техн наук В. Д. Белов, Е. М. Окороков), Гипроавтотранса Минавтотранса...
К. К. Хренов и д-р техн наук, проф iconАлюминиевые конструкции
Разработаны цнииск им. Кучеренко (д-р техн наук В. И. Трофимов, канд техн наук Б. Г. Бажанов) при участии цниипроектстальконструкции...
К. К. Хренов и д-р техн наук, проф iconУчебное пособие рекомендовано умо по образованию в области социальной...
Д-р соц наук, проф. А. В. Миронов; д-р полит, наук, проф. М. В. Савва; д-р полит, наук, проф. С. В. Передерий
К. К. Хренов и д-р техн наук, проф iconБезопасность технологических процессов и производств
«Промышленная безопасность и охрана окружающей среды» Российского государственного университета нефти и газа им. И. М. Губкина (зав...
К. К. Хренов и д-р техн наук, проф iconД. А. Леонтьев психология смысла
Рао б. С. Братусь д-р психол наук, проф., чл кор. Рао в. А. Иванников д-р психол наук, проф., чл кор. Ран в. Ф. Петренко д-р психол...
К. К. Хренов и д-р техн наук, проф iconИстория экономики учебник
О. Д. Кузнецова; канд экон наук, доц. Л. И. Пермякова; канд экон наук, доц. Е. Г. Лисовская; д-р экон наук, проф. И. Н. Шапкин; канд...
К. К. Хренов и д-р техн наук, проф iconПод общей редакцией
Кононов К. А., канд юрид наук — гл. 7 (в со­авт.); Кряжкова О. Н., канд юрид наук, доцент — гл. 7 (в со­авт.), 18, 27; Марокко II....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница