Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011


НазваниеКурс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011
страница5/16
Дата публикации29.03.2013
Размер1.71 Mb.
ТипУчебное пособие
userdocs.ru > Физика > Учебное пособие
1   2   3   4   5   6   7   8   9   ...   16

^ 5. КВАНТОВЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ
5.1. Уравнение Шредингера

Итак, состояние системы описывается волновой функцией Ψ, которая определяется конфигурацией системы и конкретным видом силового поля, в котором она находится. Найти волновую функцию частицы, движущейся в каком либо силовом поле, можно с помощью уравнения относительно этой функции:

(5.1)

где – оператор Лапласа, U – потенциальная энергия частицы в конкретном силовом поле (например, энергия электрона в поле притяжения ядра), мнимая единица, m – масса частицы.

Это уравнение (5.1) в 1926 г. получил Шредингер исходя из аналогии между уравнениями, описывающими ход световых лучей с уравнениями, определяющими траектории частиц в классической механике. Уравнение Шредингера постулируется.
^ 5.2. Уравнение Шредингера для свободной частицы

Рассмотрим свободно движущуюся частицу. И если волновой функцией фотона является плоская световая волна, для частиц волновая функция является плоской волной де Бройля, (см. раздел 4).

Для простоты ограничимся одномерным случаем:

(5.2)

Запишем волну де Бройля в комплексной форме:

(5.3)

где частота , волновое число .

Продифференцировав Ψ по времени t, а также дважды по координате x, получим: , (5.4)

Отсюда получаем:

, (5.5)

В нерелятивистской классической механике кинетическая энергия E и импульс p связаны соотношением: (5.6)

Подставив в (5.6) выражения (5.5) и сократив на Ψ, получим уравнение

(5.7)

которое совпадает с (5.1), если в нем U = 0. Отсутствие внешнего силового поля означает, что частица является свободной. Частицу можно считать свободной, если U(x)=const или в общем случае U(r)=const. В этом случае потенциальную энергию можно принять равной нулю.
^ 5.3. Уравнение Шредингера для частицы в силовом поле

Если частица находится в каком-либо силовом поле, характеризуемом потенциальной энергией U, то: (5.8)

где Е – полная энергия частицы

В этом случае уравнение Шредингера будет иметь вид:

(5.9)

Уравнение (5.9) является частным случаем уравнения (5.1) для частицы, совершающей одномерное движение. Уравнение (5.1) называется общим уравнением Шредингера.
^ 5.4. Стационарное уравнение Шредингера

Если силовое поле, в котором движется частица, стационарно (т.е. постоянно во времени), то функция U не зависит явно от t. В этом случае решение уравнения Шредингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

(5.10)

Здесь E – полная энергия частицы, которая в случае стационарного внешнего поля остается постоянной. Подставим (5.10) в (5.1):

(5.11)

Сократив на общий множитель , придем к дифференциальному уравнению, определяющему функцию ψ(x, y, z):

(5.12)

Уравнение (5.12) относительно координатной части волновой функции называется стационарным уравнением Шредингера. Далее мы будем иметь дело только с ним.

Это уравнение имеет бесчисленное множество решений, однако при наложении граничных условий, а также упомянутых выше требований (ограниченность, однозначность и непрерывность волновых функций, а также непрерывность частных производных) остается ряд решений, который имеет физический смысл. Эти решения имеют место только при определенных значениях параметра E, которые называются собственными значениями энергии. Совокупность собственных значений Е называется энергетическим спектром. Решения, соответствующие собственным значениям энергии Е, называются собственными функциями задачи.

Простейшей задачей на собственные функции и собственные значения является движение свободной частицы, упомянутой выше. Оно задается уравнением:

(5.13)

Его частным решением является функция , где A=const, ψ(x) является координатной частью волновой функции Ψ(x,t).

Функции ψ(x) соответствуют собственные значения энергии

(5.14)

где . Это выражение верно для нерелятивистской частицы. А поскольку волновое число k может принимать любые положительные значения, то энергетический спектр свободной частицы является непрерывным. Таким образом, свободная частица имеет непрерывный спектр. Для пояснения следует вспомнить спектр излучения электрона в атоме. В этом случае электрон находится в связанном состоянии, и спектр имеет дискретный характер. При отрыве электрона от атома он перестает чувствовать поле ядра, то есть для U → 0, а излучение электрона становится непрерывным, как это предсказывает уравнение Шредингера (5.13).
^ 5.5. Уравнение Шредингера для частицы в потенциальной яме

Нахождение электрона в поле ядра можно приближенно считать движением в трехмерной потенциальной яме. Высота этой ямы определяется величиной кулоновского поля ядра.

Рассмотрим простейший случай – движение частицы в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками» – потенциальная энергия на границах имеет бесконечно большое значение. Потенциальная энергия такой ямы шириной l имеет вид:

(5.15)

Рис. 5.1. Одномерная потенциальная яма

Ограничимся рассмотрением стационарных состояний системы, уравнение Шредингера для одномерной задачи в этом случае имеет вид:

(5.16)

Поскольку частица не может проникнуть за пределы потенциальной ямы, то волновая функция ψ(x) вне ямы тождественна нулю. В силу условия непрерывности ψ(x) должна быть равна нулю и на границах ямы:

(5.17)

Выражение (5.17) является граничным условием задачи.

В пределах ямы (0 ≤ xl) U=0, следовательно, уравнение Шредингера имеет вид:

(5.18)

Обозначив через (5.19)

получим уравнение, описывающее колебательный процесс:

(5.20)

Решение этого уравнения имеет вид: (5.21)

Подстановка граничных условий позволяет найти константы ω и α:

, из чего следует, что α=0.

, отсюда получаем:

(n=1, 2, 3,...) (5.22)

При n = 0 решение лишено физического смыла, так как ψ = 0 означает, что частица нигде не находится, т.е. не существует.

Подставив ω из (5.22) в выражение (5.20), можно найти собственные значения энергии частицы: (n = 1, 2, 3, ...) (5.23)

Итак, энергия, которой может обладать частица в одномерной потенциальной яме, представляет собой дискретный набор значений, то есть энергетический спектр частицы является дискретным. Минимальное значение энергии частицы, находящейся в потенциальной яме, отлично от нуля. Это проявление волновых свойств частиц. Такой результат может быть получен из соотношения неопределенности.

Как будет двигаться электрон, можно узнать, рассчитав волновые функции: Подстановка найденного значения параметра ω в формулу (5.21) дает вид собственных функций задачи: (5.24)

Подставив волновую функцию (5.24) в условие нормировки (4.18), , найдем параметр .

Таким образом, собственные функции имеют вид:

(n=1,2,3,...) (5.25)

На рисунке показаны волновые функции первых трех энергетических состояний частицы в потенциальной яме шириной l, а также вероятности обнаружения частицы на различных расстояниях от стенок ямы ψ2*ψ.



а) б) в)

Рис. 5.2. а) энергетический спектр (первые 5 состояний) частицы в потенциальной яме шириной L; б) волновая функция частицы в первых трех состояния; в) квадрат волновой функции частицы = вероятность нахождения частицы в определенной точке потенциальной ямы в первых трех состояниях

В частности видно, что в состоянии n = 2 вероятность обнаружить частицу в середине ямы равна нулю. Напомним, что согласно классическим (не квантовым) соображениям, частица с одинаковой вероятностью может находиться в любой точке ямы.

Такое поведение микрочастиц иллюстрирует тот факт, что к ним не применимо понятие траектория. В частности в состоянии n = 2 частица «перемещается» из левой части ямы в правую и при этом не проходит через «середину» этой ямы.

Оценим расстояние между уровнями:

(5.26).

Видно, что чем больше масса частицы и геометрические размеры области, в которой эта частица ограничена, тем меньше расстояние между соседними уровнями. Разумеется, для тел с большой массой ни о каких квантовых эффектах говорить не приходится. Но даже, если взять m порядка массы молекулы (~10–26 кг), а l порядка 0.1 м (размер сосуда, в котором находится молекула), расстояние между уровнями составит En ≈ n·10–20 эВ. Спектр с такой густотой линий будет восприниматься как сплошной, а молекула будет вести себя как классическая частица.

Такая же приблизительно ситуация складывается с движением электрона в проводнике. В этом случае в формулу (5.26) нужно подставить массу электрона m ~ 10–30 кг, геометрические размеры области, в которой ограничен электрон, для определенности возьмем l = 0.1 м. Тогда En ≈ n·10–16 эВ, то есть квантовые эффекты будут мало заметны, и поведение электрона в проводнике также будет иметь классический характер.

Итак, квантовый характер движения будет иметь только малая частица (нуклон, электрон, атом и даже молекула), ограниченная в очень малой области пространства. Эти условия выполняются, например, для электронов, находящихся в поле ядра. В этом случае масса электрона m ~ 10–30 кг, l ≈ 10–9 м, тогда расстояние между уровнями будет En ≈ n·1 эВ. В этом случае квантование энергии будет выраженным, следовательно, и поведение электрона будет отличным от классического.

Можно показать, что стационарные уровни в потенциальной яме возникают лишь в том случае, если Е1 ˂ U. То есть в потенциальной яме рассматриваемого вида уровни возникают лишь при условии:

(5.27)

В левой части этого неравенства стоят параметры потенциальной ямы (глубина и ширина), а в правой – только постоянные числа и универсальные постоянные. Если полученное нами условие не выполнено (потенциальная яма слишком узкая или слишком мелкая), в ней не помещается ни одного энергетического уровня. Такие случаи встречаются не так уж редко. Силы взаимодействия между двумя нейтронами являются слабыми силами притяжения. Эти силы определяют величину потенциальной энергии U. Ядра, состоящего из двух нейтронов, в природе не существует, так как потенциальная яма, в которой должны находиться два нейтрона в каких-либо состояниях, не удовлетворяет указанному выше условию (5.27). Аналогичным образом не существует и ядра, состоящего из двух протонов. Сила взаимодействия между протоном и нейтроном совсем немного больше, чем сила взаимодействия двух нейтронов или протонов. Но этой небольшой разницы достаточно, чтоб потенциальная энергия U уже удовлетворяла условию (5.27). В такой яме может образоваться только один уровень – одно состояние. Связанное состояние нейтрона и протона называется дейтроном. Возбужденного состояния дейтрона не существует, так как в соответствующей потенциальной яме может образоваться только одно состояние.

^ 6. ДОПОЛНИТЕЛЬНЫЕ ПРИЛОЖЕНИЯ КВАНТОВОЙ МЕХАНИКИ
6.1. Прохождение частицы через потенциальный барьер.

Туннельный эффект

Рассмотрим движение частицы при прохождении потенциального барьера. Пусть она движется слева направо и встречает на своем пути потенциальный барьер высотой U0 и шириной l (рис. 6.1). Согласно классической теории, если энергия частицы больше высоты барьера (E > U0), то она беспрепятственно пройдет над барьером.



Рис. 6.1. Потенциальный барьер

При этом скорость частицы несколько снизится в области II и примет первоначальное значение в области III. Если же энергия частицы меньше высоты барьера (E < U0), то сквозь барьер она проникнуть не сможет, поэтому отразится от стенки барьера и полетит в обратном направлении.

Квантовая механика предсказывает иное поведение частицы. В частности, даже если E>U0, существует ненулевая вероятность, что частица отразится от барьера и полетит в обратную сторону. В тоже время частица может проникнуть сквозь барьер независимо от того, превышает ли ее энергия величину потенциального барьера или нет.

Рассмотрим ситуацию, когда E<U0, в этом случае уравнение Шредингера:

для областей I и III имеет вид: (6.1)

а для области II: (6.2)

Решениями этих уравнений будут функции ψ1(x), ψ2(x), ψ3(x), что легко проверить подстановкой: Вид этих функций представлен на рис. 6.2.



Рис. 6.2. Изменение волновой функции при переходе через потенциальный барьер

Запишем их:

для области I:

для области III: где

для области II: где

Слагаемое в каждом решении вида еiαx соответствует волне, распространяющейся в положительном направлении оси x, слагаемое же вида еiαx соответствует волне, распространяющейся в отрицательном направлении оси x.

Сразу отметим, что коэффициент В3 должен быть равен нулю, так как в области III есть только волна, распространяющаяся в положительном направлении оси x, то есть слева направо. Для нахождения остальных коэффициентов необходимо воспользоваться упомянутыми выше условиями, накладываемыми на волновую функцию – однозначность, непрерывность и конечность.

Чтобы функция была непрерывна, волновые функции на границах рассматриваемых областей должны иметь одинаковое значение:

и (6.3)

чтобы ψ была гладкой (без изломов), ее производные должны быть непрерывны на границах областей:

и (6.4)

Отсюда вытекают уравнения на искомые коэффициенты:

(6.5)

Решение этой системы 1, А2, А3, В1 и В2} позволяет найти две важные величины: вероятность отражения частицы от потенциального барьера: , называемую коэффициентом отражения, а также вероятность прохождения частицы через барьер: , называемую коэффициентом прохождения (или коэффициентом прозрачности). Коэффициенты R и D связаны соотношением: (6.6)

Можно показать, что , где .

Поскольку выражение имеет величину порядка единицы, то коэффициент прозрачности можно считать равным:

(6.7)

Для потенциального барьера произвольной формы (рис. 6.3) формула 6.7 заменяется выражением:

(6.8)

При преодолении барьера частица как бы проходит через «туннель» в барьере (заштрихованная область на рис. 6.3). В связи с этим явление прохождения квантовых частиц сквозь непреодолимые с классической точки зрения препятствия названо туннельным эффектом.



Рис. 6.3. Туннель в потенциальном барьере произвольной формы

Классическая физика не может допустить существования туннельного эффекта. Например, пусть тело без трения скользит и встречает на своем пути горку высотой h (чем выше горка, тем больше потенциальный барьер). Если тело имеет заданную кинетическую энергию, и эта энергия меньше, чем по закону сохранения требуется для преодоления горки, то есть mV2/2 ˂ mgh. В этом случае тело поднимется до той высоты, где вся его кинетическая энергия перейдет в потенциальную, остановится, а затем начнет движение в обратном направлении.

Для частиц, имеющих квантовые свойства, туннельный эффект наблюдается очень часто. Например, α-частица, покидающая ядро при α-распаде полония 210Po, преодолевает потенциальный барьер U = 23 МэВ, величина которого существенно превосходит энергию самой α-частицы Eα = 5.3 МэВ. То есть, не будь возможен в этом случае туннельный эффект, α-излучения бы не существовало. Также не было бы возможным простое протекание тока через окисленный контакт (например, через вилку, вставляемую в розетку), так как тонкий не заметный для глаза слой окисла на поверхности металла создает потенциальный барьер. Большинство электронов имеют энергию гораздо меньше величины этого барьера, что является существенным затруднением для их движения.
1   2   3   4   5   6   7   8   9   ...   16

Похожие:

Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconКурс лекций утверждено Редакционно-издательским советом университета...
Рембеза Е. С. Квантовая, атомная и ядерная физика: курс лекций: учеб пособие / Е. С. Рембеза, В. С. Железный, Е. А. Косякова. Воронеж:...
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconРоссийской федерации
Утверждено Редакционно-издательским советом университета в качестве учебного пособия
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconСтратегическое планирование учебное пособие москва 2011 фгб оу впо...
Рекомендовано редакционно-издательским советом университета в качестве учебного пособия
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconВ. В. Жуков Основы менеджмента
Утверждено в качестве методического пособия редакционно-издательским советом мгудт
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconМетодические указания к лабораторной работе №2 по дисциплине «Основы...
Утверждено редакционно-издательским советом Тюменского государственного нефтегазового университета
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconУчебное пособие Под редакцией И. Б. Гриншпуна Рекомендовано Редакционно-издательским...
И. В. Дубровина Л. П. Кезина М. И. Кондаков В. Г. Костомаров О. Е. Кутафин Н. Н. Малофеев
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconУчебно-методическое пособие /Т. П. Синютина, Л. Ю. Миколишина, Т....
Работа одобрена редакционно-издательским советом академии в качестве учебно-методического пособия
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconКурс сравнительного правоведения
Рекомендовано Советом по правоведению Учебно-методического объединения университетов Российской Федерации в качестве учебного пособия...
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconРадугин А. А. Р15 Философия: курс лекций. 2-е изд., перераб и дополн
...
Курс лекций утверждено Редакционно-издательским советом университета в качестве учебного пособия Воронеж 2011 iconРадугин А. А. Р15 Философия: курс лекций. 2-е изд., перераб и дополн
...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница