Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов


НазваниеУчреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов
страница12/16
Дата публикации05.04.2013
Размер2.36 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   ...   8   9   10   11   12   13   14   15   16
ГЛАВА 6.^ ЦИФРОВАЯ РЕГИСТРАЦИЯ И АНАЛИЗ СИГНАЛОВ

6.1. Общие сведения

В практических задачах электрических измерений все чаще ис­пользуются динамические модели процессов и объектов.

Автономные измерительные приборы (как аналоговые, так и цифровые), предназначенные для статических измерений (вольт­метры, амперметры, ваттметры, термометры, манометры и т.д.), не позволяют осуществлять длительную автоматическую регистра­цию сигналов, выполнять последующий обстоятельный анализ по­ведения исследуемых процессов и объектов, не дают возможности определять некоторые ключевые параметры модели процесса/объек­та в динамике, достаточно полно и подробно оценивать особенно­сти процесса или объекта.

Аналоговые регистраторы (самопишущие приборы, светолучевые осциллографы, магнитографы, запоминающие электронно­лучевые осциллографы) имеют ряд существенных недостатков: сравнительно невысокую точность, не всегда достаточное число входных каналов, невысокую надежность вследствие наличия ме­ханических узлов или сложности устройства), значительные габа­ритные размеры и массу, создают серьезные трудности организа­ции автоматизированной обработки результатов записи. Кроме того, их практически невозможно использовать в информационно-из­мерительных системах, системах автоматизированного управления.

Для решения задач динамических измерений, длительной авто­матической регистрации в настоящее время широко применяются Цифровые методы и средства. Все активнее используются малога­баритные измерительные цифровые регистраторы и анализаторы, микропроцессорные и компьютерные средства измерений и реги­страции. Последующий цифровой анализ сигналов базируется имен­но на зарегистрированных массивах цифровых данных достаточно большого объема. Одно из важных преимуществ цифровых изме­рительных регистраторов  легкий и естественный переход от процедуры регистрации к процедуре автоматизированного цифро­вого анализа.

Современный уровень развития измерительной техники дает богатые возможности по организации сложных экспериментов.

Цифровые средства регистрации и анализа сигналов характеризу­ются довольно высокими значениями точности (погрешности 1,0...0,01 %), разрешающей способности, ста­бильности преобразования, быстродействия, надежности; боль­шими объемами памяти данных; при этом используются разнообразные сложные алгоритмы обработки.

^ 6.2. Цифровая измерительная регистрация

В основе многих современных средств динамических измерений лежат принципы цифровой измерительной регистрации. Класс средств цифровой измерительной регистрации представлен сегод­ня различными типами устройств: сравнительно простыми и «мед­ленными» накопителями данных  логгерами (Data Logger); реги­страторами быстропротекающих процессов (Transient Memory); цифровыми осциллографами (Digital Storage Oscilloscope – DSO): анализаторами сигналов во временной области (Digital Signal Analyzer, Time-Domain Analyzer); анализаторами сигналов в ча­стотной области (Frequency-Domain Analyzer); разнообразными ком­пьютерными измерительными устройствами (Computer-Based Instrumentation). Основные формы преобразования информации, поло­женные в основу всех этих средств, это аналого-цифровое преоб­разование входных сигналов, хранение, цифровой анализ и пере­дача больших массивов цифровых эквивалентов.

Цифровые измерительные регистраторы не имеют недостатков, присущих аналоговым, и успешно используются в современной измерительной технике. В настоящее время в мире выпускается множество самых разнообразных автономных (малогабаритных) и специализированных (прецизионных или быстродействующих) регистраторов, компьютерных измерительных устройств для ре­шения различных задач динамических измерений.

^ 6.2.1. Устройство цифрового измерительного регистратора

Цифровые измерительные регистраторы (ЦИР)  это изме­рительные преобразователи (или измерительные приборы), спе­циально предназначенные для динамических измерений и реги­страции меняющихся электрических и неэлектрических величин в течение длительного интервала времени. Объем памяти данных в ЦИР значительно больше, чем в ЦИП для статических изме­рений. Кроме того, аналого-цифровой преобразователь ЦИР обыч­но гораздо более быстродействующий, чем в структуре обычного ЦИП.

На рис. 84 приведена упрощенная структура ЦИР.

Если ЦИР многоканальный, то на входе стоит коммутатор К, который последовательно (или по определенной программе) вы­бирает («опрашивает») исследуемые сигналы x1(t), x2(t),…, xn(t) первичных измерительных преобразователей (датчиков). Далее вы­бранный сигнал подвергается аналоговым преобразованиям (в об­щем случае это могут быть масштабирование, т.е. усиление или деление сигнала, фильтрация, линеаризация). На схеме рис. 84, например, сигнал с выхода коммутатора К усиливается усилителем Ус и поступает далее на фильтр нижних частот ФНЧ, где подавля­ются высокочастотные помехи и шумы. Затем, с помощью устройст­ва выборки/хранения УВХ происходит дискретизация сигнала (пе­реход к дискретному времени) и квантование с помощью аналого-цифрового преобразователя АЦП. Последовательно получаемые в результате преобразования многочисленные результаты (коды) за­поминаются и хранятся в оперативном запоминающем устройстве ОЗУ достаточно большой емкости. По окончании процедуры реги­страции (или в процессе ее выполнения) эти данные могут быть выведены на индикатор Инд или переданы другим (внешним) устройствам по интерфейсу.


Рис. 76. Структура цифрового измерительного регистратора

Узлы, отмеченные на рис. 76 пунктирной рамкой, могут отсут­ствовать в других вариантах структур ЦИР.

Цифровые измерительные регистраторы уверенно вытесняют классические аналоговые средства динамических измерений/реги­страции. Сегодня они широко применяются в задачах мониторинга (длительного наблюдения) параметров технологических процессов, окружающей среды; при различных энергетических обследованиях.

^ 6.2.2. Дискретизация, квантование и восстановление сигнала

Термины «дискретизация» и «квантование» – по существу синонимы, но так сложилось (и это общепринято), что используются они по-разному. Термин «дискретизация» применяется обычно для обозначения процедуры замены непрерывного аргумента (текуще­го времени) ограниченной последовательностью мгновенных зна­чений, т.е. перехода к дискретному времени. Термин «квантование» означает замену бесконечного множества значений непрерыв­ной функции (уровня сигнала) конечными значениями из огра­ниченного множества цифровых эквивалентов. Дискретизация и квантование реализуют аналого-цифровое преобразование, кото­рое является основой цифровой измерительной регистрации и имеет своей целью и результатом представление фрагмента непрерывно­го во времени и по уровню входного сигнала конечным числом цифровых эквивалентов (кодов).

По разным причинам обработка поступающих от АЦП цифро­вых данных не всегда выполняется в реальном времени (в темпе поступления исходных данных), поэтому необходимо промежу­точное запоминание и хранение массива кодов в некотором запо­минающем устройстве. Такая последовательность процедур диск­ретизации и квантования входного сигнала, запоминания и хра­нения кодов и является цифровой регистрацией. А поскольку в из­мерительных экспериментах требуется вполне определенная дос­товерность всех преобразований, то необходимо знание метроло­гических характеристик основных элементов структуры и всего устройства. В этом смысле речь идет о цифровой измерительной реги­страции.

В результате процедур дискретизации и квантования фрагмент непрерывного (во времени и по уровню) входного сигнала х(t) трансформируется в массив цифровых эквивалентов (кодов Ni), соответствующих дискретным отсчетам в моменты времени t0, t1, t2, t3,…, взятые с шагом дискретизации Тд (рис. 77).

Шаг дискретизации и интервал регистрации. Конкретная форма выполнения дискретизации определяется характером сигнала, его спектральным составом, требуемой точностью последующего циф­рового преобразования и/или восстановления в аналоговую форму, задачами и алгоритмами последующей цифровой обработки информации, представления и др. Наиболее простой вид дискре­тизации – равномерная дискретизация, при которой промежуток времени между соседними отсчетами (шаг дискретизации Тд) по­стоянный в течение интервала регистрации Тр. Равномерная диск­ретизация является в технической реализации наиболее простой, поэтому и применяется в большинстве случаев.


а б

Рис. 77. Дискретизация (а) и квантование (б) сигнала

В некоторых случаях используется и неравномерная дискретиза­ция, в которой шаг дискретизации в процессе регистрации не по­стоянен, а определяется особенностями сигнала (например, ско­ростью изменения сигнала, т.е. текущим значением производной сигнала).

Рис. 78 иллюстрирует понятия шага дискретизации ^ Тд (проме­жутка времени между соседними отсчетами – результатами ана­лого-цифрового преобразования) и интервала регистрации Тр (об­щего времени записи).



а б

Рис. 78. Иллюстрация понятия шага дискретизации (а) и интервала регистрации (б)

Поскольку значение шага Тд перед экспериментом может зада­ваться (программироваться пользователем) в некотором диапазо­не, то возникает вопрос выбора конкретного значения шага Тд (или частоты Fд = 1/ Тд) дискретизации. Этот вопрос является дос­таточно важным. Чем меньше шаг Тд (или, что то же, чем больше частота Fд), тем лучше с точки зрения последующей обработки и восстановления сигнала. Но, с другой стороны, высокая частота дискретизации означает высокую скорость заполнения памяти ре­гистратора, объем которой ограничен. Для каждого отдельного экс­перимента значение частоты Fд определяется максимально воз­можной скоростью изменения входного сигнала; способом даль­нейшего использования цифровой информации; алгоритмом обработки данных; целями и задачами восстановления входного сиг­нала по его цифровым эквивалентам; спецификой представления графической информации; требуемой окончательной погрешно­стью; объемом памяти.

В практике электрических измерений есть задачи, где требуется высокая частота дискретизации Fд входных сигналов (высокое бы­стродействие АЦП). Например, при анализе спектрального соста­ва электрического сигнала напряжения сети может потребоваться частота дискретизации Fд = (100...200) кГц (шаг дискретизации Тд должен составлять, соответственно, 10...5 мкс). В то же время есть задачи, где достаточны сравнительно низкие частоты дискретиза­ции (т.е. допустимы большие значения шага Тд дискретизации). Практически все тепловые процессы – это медленно меняющие­ся процессы, при изучении которых возможна низкая частота дис­кретизации Fд. Например, для исследования характера изменения температуры в помещении в течение трех суток (т. е. общая про­должительность записи – интервал регистрации Тр = 72 ч) циф­ровым регистратором шаг дискретизации Тд может быть выбран равным 15 мин. Это означает, что по окончании записи будет заре­гистрировано (сохранено в памяти) общее число отсчетов (резуль­татов) N = 72  60/15 = 288. В некоторых случаях может оказаться достаточно информативным даже шаг дискретизации Тд = 1 ч.

Восстановление и представление сигналов. Представление циф­ровых данных о зарегистрированном входном аналоговом сигнале х(t) (рис. 79, а) в графической форме возможно по-разному (рис. 79, б...г). Оно определяется требованиями задачи эксперимента, квалификацией оператора, возможностями аппаратуры и др.



а б в г

Рис. 79. Способы восстановления и представления сигнала: а – входной сигнал; б – точечное представление; в – ступенчатая аппроксимация; г – линейная интерполяция

Восстановление может происходить в самом регистраторе/ана­лизаторе или в компьютере, который выполняет обработку и пред­ставление зарегистрированных данных. Наиболее простым и не требующим дополнительных затрат является так называемое то­чечное представление (рис. 79, б), применяемое в основном в циф­ровых осциллографах и анализаторах с матричными индикатора­ми и принтерами. Основанный на способности человеческого гла­за сглаживать последовательность множества точек при небольших расстояниях между ними, этот способ дает удовлетворительное качество изображения уже при разрешающей способности экрана 1,5...2 точки/мм.

Несколько сложнее реализуется ступенчатая аппроксимация, однако при невысоких разрешающих способностях АЦП по времени и амплитуде может создаваться искаженное представление о входном сигнале. Между тем это наиболее распрост­раненный способ восстановления и представления зарегистриро­ванных сигналов.

В некоторых случаях применяется способ линейной {векторной) интерполяции (восстановление формы сигнала отрезками прямых линий), требующий определенных затрат на формирова­ние отрезков (векторов), но дающий более гладкую кривую (см. рис. 79, г).

В любом случае, чем выше частота дискретизации в процессе регистрации и чем больше разрядность аналого-цифрового пре­образования, тем точнее впоследствии может быть восстановлен сигнал по массиву зарегистрированных цифровых данных.
^ 6.2.3. Задание интервала регистрации

Наряду с выбором шага дискретизации Тд не менее серьезным является и вопрос определения необходимой (и/или возможной) длительности и выбора способа задания интервала регистрации Тр. Правильная организация задания моментов начата и окончания интервала регистрации Тр – важная составная часть подготовки эксперимента по измерительной регистрации.

^ Запуск в цифровых регистраторах. Запуск (Trigger) означает процедуру автоматического определения момента начала интервала регистрации по некоторым критериям (условиям), заданным опе­ратором. В средствах цифровой измерительной регистрации применяются различные способы (режимы) запуска. Существует деление возможных режимов запуска на две группы: внутреннего и внешнего запуска.

^ Внутренний запуск в свою очередь делится на запуск по заданному моменту времени; запуск по некоторым параметрам входно­го сигнала (например, по уровню или по скорости изменения) и комбинированный запуск. Самый простой и понятный из них – запуск по заданному астрономическому времени, который возмо­жен благодаря внутреннему энергонезависимому таймеру регистратора. При этом поведение входного сигнала не имеет значения. В заранее запрограммированный оператором день и час автоматически начинается процесс регистрации сигнала.

Цифровой запуск (Digital Trigger) по уровню подобен класси­ческому запуску развертки аналогового (электронно-лучевого) осциллографа. Разница только в том, что в данном случае происходит сравнение цифровых кодов (а не аналоговых уровней). Задание уровня может быть реализовано в единицах конкретной измеряемой физической величины (например, в вольтах), в процентах диапазона измерения, иногда – в значениях кода.

В ряде случаев удобны режимы запуска по некоторым другим параметрам исследуемого сигнала, например, по значению его первой производной dx/dt (т.е. скорости его изменения). Например, момент начала регистрации определяется условием «dx/dt > 1 В/мин», т.е. превышением скорости изменения входного напряжения зна­чения 1 В/мин.

Возможны также режимы запуска, в которых используются ком­бинации нескольких условий (признаков) запуска. Например, за­пись начинается при одновременном выполнении таких условий: астрономическое время – не ранее 12:00; значение амплитуды сигнала – положительное; производная сигнала – отрицательная и превышает по модулю значение 100 мВ/мин.

Режим внешнего запуска (Ехtеrnаl Trigger) реализуется поступ­лением на специальный вход регистратора сигнала на начало ре­гистрации извне (от внешних источников, от оператора, от других устройств/приборов). При этом поведение входного исследуемого сигнала не имеет значения. Иногда такой режим называется запус­ком по некоторому событию (Event Trigger). Этот внешний сигнал обычно является унифицированным сигналом, например, имею­щим уровень транзисторно-транзисторной логики (ТТЛ). Такой режим аналогичен режиму внешнего запуска обычного ос­циллографа.
1   ...   8   9   10   11   12   13   14   15   16

Похожие:

Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Гродненский государственный...
С. Е. Витун, заведующий кафедрой финансов и кредита уо «Гродненский государственный университет имени Янки Купалы», кандидат экономических...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Белорусский государственный...
Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «Гродненский государственный медицинский университет» Кафедра биохимии
Рекомендовано Центральным научно-методическим советом уо “Гргму” (протокол № от 10. 06. 20010 г.)
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconМинистерство образования и науки РФ федеральное государственное бюджетное...
«Московский государственный университет технологий и управления имени К. Г. Разумовского»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКонкурс «Лучший инновационный проект студентов и аспирантов» проводится...
«Чувашский государственный университет имени И. Н. Ульянова» в рамках всероссийского фестиваля науки, организуемого Министерством...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный технический университет...
Список использованных источников
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconГосударственное образвательное учреждение высшего профессионального образования
Самарский государственный аэрокосмический университет имени академика С. П. Королева”
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКафедра акушерства и гинекологии
Государственное образовательное учреждение высшего профессионального образования «тамбовский государственный университет имени г....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница