Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов


НазваниеУчреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов
страница14/16
Дата публикации05.04.2013
Размер2.36 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   ...   8   9   10   11   12   13   14   15   16
глава 7. Электрические измерения неэлектрических величин

7.1. Измерение температуры

В окружающем нас мире существует великое множество неэлек­трических величин. И для оценки их значений в настоящее время широко используются электрические методы и средства измере­ний. Для того, чтобы использовать все достоинства электрических форм преобразования информации, необходимо предварительно преобразовать неэлектрическую физическую величину в электри­ческую (электрическое напряжение, ток, электрическое сопротив­ление или емкость, частоту следования импульсов, индуктивность, заряд или др.).

Рассмотрим применение этих подходов на примере измерения некоторых неэлектрических величин, наиболее часто встречающих­ся в практических задачах.

Температура – одна из важнейших физических величин, оце­ниваемых в задачах различных научных, технических, промыш­ленных исследований. В настоящее время используются как электрические, так и не­электрические методы и средства измерения температуры. Неэлек­трические методы представлены, например, обычными жидкостны­ми термометрами. Электрические методы (основа современных измерений) реализованы, например, в термометрах и регистрато­рах на основе термоэлектрических преобразователей.

Различают статические (в которых предполагается неизменность значения температуры в течение времени наблюдения) и динами­ческие измерения (когда процесс достаточно быстро меняется и принципиально важно знать характер поведения величины и (или) важно оперативно отслеживать все изменения, как, например, в системе автоматизированного управления). Существует также де­ление средств измерения температуры на показывающие и реги­стрирующие. Первые реализуют статические модели и имеют толь­ко шкалу или цифровой индикатор для отсчета текущего значе­ния. Вторые предназначены для динамических моделей и позво­ляют записывать изменения температуры (как функции времени) в течение некоторого, порой достаточно длительного, интервала времени.

По способам преобразования информации методы и средства измерения (регистрации) делят на аналоговые и цифровые. Цифро­вые термометры имеют ряд известных преимуществ перед анало­говыми – более высокие метрологические и эксплуатационные характеристики, быстродействие, надежность. Кроме того, циф­ровая форма представления информации обеспечивает простоту дальнейшей автоматизированной обработки, хранения, передачи и представления данных.

По принципу взаимодействия прибора с объектом методы и средства измерения температуры делятся на контактные и бескон­тактные. Первые проще в применении и могут обеспечивать более высокую точность. Вторые удобнее в работе (а в некоторых задачах просто незаменимы), позволяют получить результат быстрее, хотя, может быть, и с большей погрешностью.

Многоканальные измерители (регистраторы) температуры пред­назначены для регистрации нескольких процессов и/или синхрон­ных измерений температуры в нескольких точках.

В настоящее время в практике температурных измерений ис­пользуются, как правило, цифровые средства измерения температуры, основанные на электрических методах преобразования. При этом применяются как статические, так и динамические модели объектов и процессов. Одинаково широко распространены и кон­тактные, и бесконтактные методы и средства.

Одноканальные измерители применяются чаще многоканальных, хотя широко используются комбинированные цифровые приборы, которые могут измерять две или несколько различных физических величин, например, температуру и относительную влажность воз­духа или температуру и скорость потока воздуха (термоанемометр). Среди регистраторов температуры многоканальность встречается чаше, чем в показывающих приборах.

Основными требованиями, предъявляемыми к средствам изме­рения и регистрации температуры (как и к другим сред­ствам технических измерений), являются: необходимая достовер­ность результатов измерения, надежность и возможность работы в жестких условиях эксплуатации, малые габаритные размеры и мас­са, простота и удобство работы, отсутствие влияния (точнее – пре­небрежимо малое влияние) на ход исследуемых процессов, на­глядность представляемой информации, доступная цена.

7.1.1. Контактные методы и средства измерений

Если преобразовать неэлектрическую физическую величину – температуру θ – в какую-либо пропорциональную электрическую величину (ЭДС Е, напряжение U, ток I, сопротивление R, частоту сигнала f и т.п.) с помощью первичных измерительных преобра­зователей, то затем ее значение можно легко определить средства­ми электрических измерений.

При построении первичных измерительных преобразователей (датчиков) используются разнообразные физические эффекты. В ос­новном применяются следующие разновидности термоэлектриче­ских датчиков:

  • металлические термометры сопротивления (ТС);

  • термоэлектрические преобразователи (ТП) – термопары;

  • полупроводниковые термометры сопротивления (термисторы);

  • полупроводниковые интегральные сенсоры (датчики);

• пьезоэлектрические (кварцевые) преобразователи с частот­ным выходным сигналом.

Основные англоязычные термины этого класса преобразовате­лей таковы: Resistance Temperature Detector (RTD) – термометр сопротивления; Thermo-Couple (ТС) – термопара; Thermistor – термистор; Monolithic Linear Temperature Sensor – монолитным полупроводниковый датчик (с линейной характеристикой преоб­разования); Quartz Sensor – кварцевый датчик.

Можно кратко охарактеризовать основные особенности этих первичных измерительных преобразователей следующим образом.

Металлические ТС обеспечивают высокую точность, хорошие линейность, стабильность и повторяемость характеристик. Ос­новные недостатки – возможное значительное влияние (на ре­зультат измерения) сопротивления проводников линии связи, необходимость дополнительного источника питания (напряжения или тока). Кроме того, возможен саморазогрев ТС от протекаю­щего по нему тока, что может привести к дополнительным по­грешностям.

Термопары не требуют вспомогательного источника питания, имеют широкий диапазон измеряемых температур. Однако им при­суща заметная нелинейность характеристики преобразования. Не­которые проблемы создает необходимость учета (или компенса­ции) влияния температуры свободных концов ТП на результат измерения. Кроме того, малое выходное напряжение (и сравни­тельно невысокая чувствительность) требует довольно чувствитель­ных вторичных преобразователей (усилителей) и/или выходных приборов.

Термометры сопротивления и термопары отличаются достаточ­но высокими точностью, стабильностью и повторяемостью своих характеристик преобразования.

^ Термисторы (полупроводниковые сопротивления), в свою очередь, имеют высокую чувствительность, простую двухпроводную схему включения (не требующую компенсации температуры свободных концов, как у ТП), сравнительно высокое быстродействие. Но при этом у них есть серьезные недостатки: резко нелинейная характе­ристика преобразования и плохая повторяемость характеристики. Кроме того, они имеют сравнительно узкий диапазон измеряемых температур.

^ Полупроводниковые интегральные датчики характеризуются высо­кой линейностью характеристики преобразования, однако имеют ограниченный диапазон измеряемых температур (до 150...200°С) и, кроме того, требуют наличия внешнего источника питания.

У датчиков на основе кварцевых резонаторов выходной величи­ной является изменение резонансной частоты колебаний при из­менении температуры. Такие датчики обеспечивают наиболее вы­сокую точность, правда, в узком диапазоне температур. Кроме того, часто основные параметры характеристики преобразования таких датчиков и их температурные коэффициенты не стандартизованы и подразумевают индивидуальную градуировку.

Все упомянутые датчики выпускаются в различном конструк­тивном исполнении, что позволяет решать самые разнообразные задачи (работать с жидкостями, газами, сыпучими средами, с по­верхностями различных профилей, в различных температурных диапазонах и др.). Есть датчики для поверхностных измерений, погружные, воздушные, магнитные датчики (которые легко кре­пятся на ферромагнитных, например, стальных поверхностях), датчики, закрепленные на «липучей» ленте, датчики на подшип­никах и др.

Контактные электрические методы, реализованные в различ­ных средствах измерения/регистрации на основе таких преобразо­вателей, позволяют работать в широком диапазоне тем­ператур (–200...+2000 °С). Погрешность таких контактных измери­телей температуры зависит не только от качества первичных изме­рительных преобразователей (датчиков), но и от организации ли­нии связи датчик – измеритель, а также от характеристик вторич­ных преобразователей. Типичные значения погрешностей таких термометров ±(0,2... 1)%, хотя в некоторых моделях достигаются значения погрешностей ±(0,01 ...0,1) %. Типичная чувствительность результатов измерения – доли градуса Цельсия.

Рассмотрим подробнее особенности применения наиболее рас­пространенных типов датчиков.

^ Термометры сопротивления. Приборы и преобразователи на ос­нове металлических ТС используют зависимость электрического сопротивления металлов Rт от температуры θ. У чистых металлов эта зависимость практически линейна и количественно выражает­ся следующим образом:

Rт = R0 (1 +αθ),

где R0 – сопротивление при температуре 0 °С; α температурный коэффициент сопротивления.

Температурный коэффициент сопротивления α, 1/°С, опреде­ляется по формуле

α =(R/ R) / θ,

где R/ R – относительное изменение сопротивления датчика при изменении температуры θ.

Этот коэффициент можно задать иначе, % / °С:

α =(R100 / R) / θ.

Значения температурного коэффициента сопротивления α у со­временных ТС лежат в диапазоне 0,003...0,006 1/°С, что соответ­ствует приращению сопротивления примерно на 0,3...0,6 % от ис­ходного значения (при 0 °С) при увеличении тем­пературы на 1 °С.

Наиболее часто используемые материалы: медь (для диапазона температур – 50... + 200 °С) и платина (для диапазона – 250... + 1000 °С). Номинальные значения сопротивления ТС определяются конструкцией и материалом датчика, конкретной градуировкой и лежат в диапазоне 10... 1000 Ом (при 0 °С или при комнатной температуре).

Медные ТС выпускаются с различными номинальными значе­ниями сопротивления: 25... 1000 Ом. Например, на рис. 8.2, а пока­зана характеристика медного ТС с номинальным (при 0 °С) сопротивлением R0 – 53 Ом.

Платиновые ТС довольно широко распространены в технических измерениях. Они изготовляются из чистой платины (99,99 %). Чаше всего используются ТС с номинальным сопротив­лением 100 Ом (Рt 100) при 0 °С, хотя существуют ТС и с другими значениями номинального сопротивления: 25, 500, 1000 Ом. Но­минальные значения токов, протекающих по ТС, обычно таковы: 1 мА (для Рt 100) и 0,1 мА (для Рt 1000). Температурный коэффи­циент сопротивления α платиновых (Рt 100) ТС имеет значе­ние: αе = 0,00385 Ом/Ом/°С.

Конструктивно ТС состоят из собственно чувствительного эле­мента, защитного кожуха (чехла) и элементов крепления. Чувстви­тельный элемент представляет собой намотку из тонкой изолиро­ванной проволоки (диаметром доли миллиметра) на диэлектри­ческом каркасе (стержне), выполненном из слюды, керамики или стекла. Существуют также ТС фольгового (тонкопленочного) исполнения, обеспечивающего минималь­ную тепловую инерционность датчика. Фольговые (пленочные) ТС имеют в 5... 10 раз меньшее значение времени реакции (отклика), чем у проволочных ТС, что чрезвычайно важно при работе с ми­ниатюрными объектами в динамических измерениях при быстро­меняющихся температурах.

Как правило, ТС включаются в мостовые схемы. Различают урав­новешенные и неуравновешенные мостовые схемы. Уравновешенный мост имеет один или несколько резисторов, сопротивление кото­рых может целенаправленно изменяться (вручную или автомати­чески) с тем, чтобы добиться равновесия. Равновесие моста ха­рактеризуется отсутствием разности потенциалов (и, следователь­но, тока) в измерительной диагонали моста (в цепи чувствитель­ного нулевого индикатора И), что означает равенство произведе­ний сопротивлений R1, R2, R3, Rx резисторов R1, R2, R3, Rx про­тивоположных плеч моста (рис. 84, а):

Rx R2 = R1 R3 .

Рис. 84. Включение ТС в мостовую схему

Зная значения сопротивлений R1, R2, R3, можно определить значение неизвестного сопротивления:

Rx = R1 R3 / R2.

Если в роли Rx выступает ТС с сопротивлением Rт (рис. 84, б), то можно, зная характеристику ТС, оценить значение температу­ры θ, которая действует на датчик. В случае неуравновешенного моста значение Rт сопротивления ТС (и, следовательно, темпера­туры θ) определяется по значению разности потенциалов измери­тельной диагонали моста. Уравновешенные мосты обладают более высокой точностью в сравнении с неуравновешенными.

Главная проблема при работе с датчиками – ТС – влияние на результат измерения сопротивления проводников линии связи rл.с. Не всегда мостовая схема может быть расположена в непосред­ственной близости от объекта, на котором установлен датчик, поэтому в общем случае может потребоваться многометровая ли­ния связи. В зависимости от специфики конкретных задач измере­ний применяются двухпроводное, трехпроводное или четырехпро-водное подключение ТС к измерителю.

Преимущество двухпроводной схемы в том, что для подключе­ния ТС требуются всего два проводника линии связи (что особен­но важно в случаях, когда линия связи большой длины). Однако при двухпроводной линии связи (см. рис. 84, б) сопротивление rл.с соединительных проводников (и его изменения при естественных колебаниях температуры окружающей среды) прямо входит в ре­зультат измерения. Поскольку длина линии связи может быть зна­чительной (десятки метров), то и погрешность может оказаться большой.

Существуют различные способы компенсации этой погрешно­сти. Один из них – использование трехпроводной схемы подключе­ния термометра сопротивления (рис. 85, а).

В этом случае при равновесии мостовой схемы выполняется со­отношение

(Rт + rл.с) R2 = R1(R3 + rл.с)



а б

Рис. 85. Трехпроводное (а) и четырехпроводное (б) включение ТС

Если в схеме моста R1 = R2 и сопротивления rл.с соединительных проводников одинаковы (это естественное предположение), то результат измерения будет определяться только температурой ТС и не будет зависеть от значения сопротивлений rл.с. Отметим, что сопротивление проводника rл.с в цепи индикатора И не имеет зна­чения, так как в случае равновесия моста в этой цепи тока нет.

Применяются также и четырехпроводное включение (рис. 85, б). Правда, это уже не мостовая схема. В основе такого измерителя источник известного постоянного тока I0, который протекает че­рез сопротивление ТС Rт. При этом сопротивления соединитель­ных проводников rл.с и их изменения практически не влияют на значение тока I0 и, следовательно, на результат измерения. Вольт­метром V (с большим входным сопротивлением) измеряется па­дение напряжения собственно на сопротивлении ТС Rт.

Одним из проявлений методической погрешности является воз­можное искажение результата вследствие нагрева ТС протекающим по нему током. Уменьшение напряжения питания моста Е0 позволя­ет уменьшать этот ток, но в то же время приводит к снижению чувствительности. Поэтому иногда для достижения высокой чувстви­тельности и одновременно сохранения допустимого среднего зна­чения тока в резисторах применяют для питания моста не постоян­ное напряжение, а импульсное достаточно большой амплитуды.
1   ...   8   9   10   11   12   13   14   15   16

Похожие:

Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Гродненский государственный...
С. Е. Витун, заведующий кафедрой финансов и кредита уо «Гродненский государственный университет имени Янки Купалы», кандидат экономических...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Белорусский государственный...
Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «Гродненский государственный медицинский университет» Кафедра биохимии
Рекомендовано Центральным научно-методическим советом уо “Гргму” (протокол № от 10. 06. 20010 г.)
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconМинистерство образования и науки РФ федеральное государственное бюджетное...
«Московский государственный университет технологий и управления имени К. Г. Разумовского»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКонкурс «Лучший инновационный проект студентов и аспирантов» проводится...
«Чувашский государственный университет имени И. Н. Ульянова» в рамках всероссийского фестиваля науки, организуемого Министерством...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный технический университет...
Список использованных источников
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconГосударственное образвательное учреждение высшего профессионального образования
Самарский государственный аэрокосмический университет имени академика С. П. Королева”
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКафедра акушерства и гинекологии
Государственное образовательное учреждение высшего профессионального образования «тамбовский государственный университет имени г....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница