Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов


НазваниеУчреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов
страница15/16
Дата публикации05.04.2013
Размер2.36 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   ...   8   9   10   11   12   13   14   15   16

Термопары. Приборы и преобразователи на основе термопар широко распространены. Компактные цифровые термометры на основе термопар являются в настоящее время основным и самым массовым инструментом в температурных измерениях.

Выходной сигнал термопары – постоянное напряжение – до­вольно легко может быть преобразован в цифровой код или изме­рен простыми средствами (например, малогабаритным цифровым мультиметром). Термопары могут быть подключены для дальней­шего преобразования к различным вторичным измерительным преобразователям (приборам) как аналоговым, так и цифровым, для статических и динамических измерений.

Диапазон температур, измеряемых с помощью ТП, довольно широк: от – 200 до +2000 °С. Измерители на основе ТП отличаются высокой точностью и чувствительностью, хорошей повторяемо­стью характеристики преобразования. Обычный диапазон вы­ходных напряжений составляет 0...50 мВ (в зависимости от ис­пользуемых в ТП материалов), типичный температурный коэф­фициент преобразования (чувствительность ТП) лежит в диапазо­не 10...50 мкВ/°С.

В основе ТП лежит термоэлектрический эффект, суть которо­го заключается в следующем. Если два проводника из различных металлов (сплавов) соединены в замкнутую цепь, причем темпе­ратура одного соединения (спая) заметно отличается от темпера­туры другого, то возникает термоЭДС Ет (и в замкнутой цепи будет протекать ток), значение которой зависит от разности тем­ператур спаев и характеристик материалов проводников. Если в разрыв свободных концов включен измеритель ЭДС или вольт­метр V, то его показания будут определяться разницей темпера­тур (θ1 – θ2) (рис. 86, а).

а б в

Рис. 86. Термоэлектрические преобразователи (термопары):

а – возникновение термоЭДС; б – термобатарея; в – дифференциальная термо­пара; θ1 – температура рабочего спая; θ2 – температура свободных концов; V измеритель ЭДС или напряжения

Зависимость термоЭДС от разности температур спаев нелиней­на, но для небольших диапазонов температур, при невысоких точ­ностных требованиях (или упрощая взгляд на характеристику ТП) ее можно считать линейной. И тогда значение термоЭДС термопа­ры Ет определяется (в первом приближении) следующим образом:

Ет = Sт1 – θ2),

где Sт – чувствительность ТП (коэффициент преобразования); θ1 – температура рабочего (так называемого «горячего») спая; θ2 – тем­пература свободных (так называемых «холодных») концов.

Для обеспечения однозначной зависимости термоЭДС от тем­пературы θ1 необходимо поддерживать постоянной и известной температуру θ2. Обычно это 0 или +20 °С. Таким образом, зная значение Sт и измерив значение термоЭДС термопары, можно опре­делить температуру θ1. Конечно, для работы в широких темпера­турных диапазонах необходимо пользоваться более точными выра­жениями – полиномиальными аппроксимациями нелинейной за­висимости Ет от разности температур. В современных цифровых термометрах применяется автоматическая линеаризация храктери-стик приеобразования ТП.

В настоящее время, как правило, вместо методов и средств под­держания постоянства значения θ2 применяются способы и уст­ройства автоматической компенсации влияния температуры окру­жающей среды на свободные концы ТП.

Для повышения чувствительности таких термометров иногда объединяют последовательно несколько термопар в термобатарею (рис. 95, б). При этом рабочие концы всех термопар находятся при температуре исследуемого объекта θ1, а свободные – при посто­янной (или известной) температуре θ2. Суммарная выходная тер­моЭДС, естественно, будет равна сумме термоЭДС отдельных ТП.

Для нахождения разности температур двух объектов применя­ются так называемые дифференциальные термопары, которые со­стоят из двух встречно включенных ТП (рис. 86, в). Рабочие концы ТП имеют разную температуру (θА и θБ), а свободные – одинако­вую θ2. В результате выходное напряжение пропорционально раз­ности температур.

Термисторы. Существует особый класс датчиков – полупро­водниковые термометры сопротивления, имеющие значительно больший, чем обычные ТС, температурный коэффициент сопро­тивления, равный 1...20 1/°С, причем знак этого коэффициента может быть как положительным (у позисторов), так и отрицатель­ным (у термисторов). Это обеспечивает значительно более высо­кую чувствительность термометров на их основе. Основные пре­имущества: малые габариты и масса (и, следовательно, малая теп­лоемкость и тепловая инерционность), простота конструкции и, следовательно, хорошие надежность и механическая прочность, а также — низкая цена. Основные недостатки этих преобразовате­лей: сравнительно узкий диапазон измеряемых температур (типично – 50... + 150 °С), значительная нелинейность преобразования (сопро­тивление термисторов с ростом температуры уменьшается при­мерно по экспоненциальному закону), плохая повторяемость ха­рактеристики преобразования от экземпляра к экземпляру (что означает необходимость индивидуальной градуировки и затрудня­ет замену датчиков даже одного типа), значительная временная нестабильность характеристики, особенно при длительной работе на высоких температурах.

^ Интегральные полупроводниковые датчики. Интегральные дат­чики появились сравнительно недавно благодаря успехам микро­электроники. Эти датчики обеспечивают выходной сигнал (напряже­ние или ток), практически линейно зависящий от температуры θ. Схемы подключения этих датчиков к измерителю по­казаны на рис. 87.

На рис. 87, а приведена схема подключения интегрального дат­чика напряжения. Выходное напряжение U = f(θ) датчика через усилитель-повторитель подается на вход цифрового вольтметра ЦВ или аналого-цифрового преобразователя АЦП, преобразующего это напряжение, пропорциональное температуре, в цифровой код. Чувствительность таких датчиков обычно 10 мВ/°С.



а б

Рис. 87. Подключение интегральных полупроводниковых датчиков: a – напряжения; б – тока

Рис. 87, б иллюстрирует подключение интегрального датчика тока. Выходной ток I = f(θ) датчика преобразуется посредством резистора Я в пропорциональное напряжение и также подается на вход ЦВ или на вход АЦП, преобразующего далее это напряжение в цифровой код. Типичная чувствительность таких датчиков обыч­но составляет 1 мкА/°С.

^ Сравнение возможностей различных датчиков. Сравнить возмож­ности различных датчиков температуры позволяет диаграмма на рис. 88, где показаны ориентировочные диапазоны применения наиболее распространенных первичных измерительных преобра­зователей температуры: термометров сопротивления – платино­вых (ТСП) и медных (ТСМ); термоэлектрических преобразовате­лей – термопар различных типов; термисторов; интегральных по­лупроводниковых датчиков и кварцевых резонаторов.



Рис. 88. Типичные диапазоны применения датчиков различных типов

Для динамических измерений температуры и регистрации быс­троменяющихся тепловых процессов важным параметром являет­ся тепловая инерционность термоэлектрических преобразователей, которая в основном определяется конструкцией датчика и особен­но – устройством его защитной арматуры. В экспериментах с быс­троменяющейся температурой, если не учитывать это обстоятельство, возможны значительные динамические погрешности. Это особенно важно для регистраторов и измерителей температуры, работающих в составе систем управления, где, как правило, необ­ходимо обеспечение режима так называемого реального времени. Значение времени реакции датчиков на скачкообразное измене­ние температуры (времени достижения уровня 99 % асимптоти­ческого значения) лежит в диапазоне от единиц секунд до десят­ков минут. В отдельных специальных разработках конструкций тер­мометров сопротивления (пленочных) и термисторов могут быть достигнуты времена реакции термисторов в десятые доли секунды.

^ Устройство и характеристики цифрового термометра. Рассмот­рим один из наиболее распространенных вариантов устройства циф­рового термометра (ЦТ), входным датчиком которого является ТП.

На рис. 89 приведена упрощенная структура контактного ЦТ, которая, естественно, напоминает структуру любого цифрового измерительного прибора.

Термопара подключается ко входу усилителя, назначение кото­рого поднять уровень входного сигнала с единиц-десятков милли­вольт до единиц вольт. Аналого-цифровой преобразователь АЦП преобразует усиленный сигнал ТП в цифровой код, пропорцио­нальный уровню термоЭДС и, следовательно, значению измеряе­мой температуры.



Рис. 89. Структура контактного цифрового термометра

В автономных ЦТ, как правило, применяются АЦП, использующие интегрирующие методы преобразования, обеспечивающие высокие точность, чувствительность, разрешаю­щую способность, высокое подавление периодических помех об­щего и нормального вида, уровень которых может быть значитель­ным. Выходной код АЦП запоминается (и затем некоторое время хранится) в регистре и выводится на цифровой индикатор (циф­ровое отсчетное устройство). Микропроцессорный контроллер уп­равляет работой всех узлов прибора. Он же выполняет функцию линеаризации характеристики ТО. С помощью клавиатуры опера­тор задает режимы работы. В структуре прибора может присутство­вать интерфейс для обмена информацией с внешними цифровыми устройствами (например, для передачи результатов регистрации в персональный компьютер и/или в систему автоматизированного управления).

Известны модели многоканальных ЦТ (чаше двухканальных). Отличие этих приборов — наличие коммутатора входных ТП, ко­торый позволяет поочередно подключать датчики ко входу усили­теля. Двухканальные ЦТ обычно имеют режим измерения разно­сти температур. Такие приборы называются дифференциальными термометрами.

Современные ЦТ отличаются малыми габаритами (Hand-held – «удерживаемые в ладони») и массой (100...500 г), сравни­тельно низкой стоимостью, достаточно высокими метрологиче­скими и эксплуатационными характеристиками.

Возможна работа прибора с термопарами различных типов. Прибор имеет цифровой жидкокристалличе­ский индикатор, простую понятную клавиатуру, размещен в пыле-влагозашищенном противоударном корпусе. Укомплектован не­сколькими термопарами различного конструктивного исполне­ния (для поверхностного измерения, воздушные, погружные, магнитные и др.).

^ Специфика контактных измерений температуры. Даже при очень точном измерителе (регистраторе) температуры можно получить большую погрешность результата из-за неправильной организа­ции эксперимента, неудачной (неграмотной) установки датчиков на объекте. При контактных измерениях температуры поверхности необходимо учитывать следующие важные обстоятельства.

  1. Если контакт датчика с объектом недостаточно хорош, мала площадь соприкосновения, то может иметь место слабая теплопе­редача от объекта к датчику. При этом в общем случае могут также возникать нежелательные тепловые потоки вдоль корпуса зонда (защитного чехла), которые также искажают результат измерения.

  2. Датчик, установленный на поверхности объекта, в общем случае испытывает не только влияние интересующей эксперимен­татора температуры, но и температуры окружающей среды. Чем больше разница этих температур, тем сильнее может отличаться результат измерения от ожидаемого (от истинного) значения. Кроме того, может сказываться естественная конвекция воздуха вокруг датчика.

  3. Если теплоемкость объекта мала (масса и габариты невелики как, например, в случае исследования температуры поверхности контактной клеммы низковольтного маломощного электроприво­да), то возможно сильное влияние датчика (особенно массивно­го) на температуру исследуемого объекта (искажение режима объек­та). Это приводит к появлению значительной погрешности взаи­модействия в статических измерениях и к заметной динамической погрешности при изменениях температуры объекта.

  4. Если интересует температура горячей воды, текущей внутри трубопровода, и есть результат измерения температуры внешней поверхности этого трубопровода, то необходимо отдавать себе от­чет в том, что это не одно и то же. Разность результата измерения и фактической температуры воды может быть весьма значитель­ной (несколько градусов).

Конечно, температуру внешней (доступной) поверхности тру­бопровода можно измерить с высокой точностью, но установить связь ее с температурой содержимого гораздо важнее (и одновре­менно сложнее). Следует попытаться определить эту связь теорети­чески (с помощью хотя бы грубой модели) или эксперименталь­но, например, используя (там, где это возможно) стационарные термометры, погруженные в поток.

7.1.2. Бесконтактные методы и средства измерений

Бесконтактные (Non-Contact) измерения температуры неза­менимы в тех случаях, когда нежелательно, невозможно, сложно, и/или опасно обеспечить механический контакт датчика с объек­том измерения.

Не так легко определить температуру находящегося в движении объекта, например, быстро движущейся бумажной ленты, или вращающегося барабана бетономешалки, или потока горячего ас­фальта. Иногда поверхность объекта, температура которого инте­ресует, недоступна и/или небезопасна (например, при оценке пе­регрева контактного соединения воздушной линии электропере­дачи или высоковольтного трансформатора).

Другая ситуация: объект исследования имеет малые габариты и массу (и, следовательно, малую теплоемкость) и использование контактных термометров привело бы к очень большой методичес­кой погрешности (погрешности взаимодействия) за счет значи­тельного количества тепла, отнимаемого датчиком прибора от объекта и, как следствие, недопустимого искажения режима его работы и, естественно, результата измерения. Особенно сильно это проявлялось бы при необходимости исследования достаточно быстрых изменений температуры исследуемого объекта малой мас­сы, например, в случае оценки температуры миниатюрных элект­ронных узлов.

Бесконтактные методы и средства измерения температуры яв­ляются так называемыми неинвазивными, т.е. не требуют вмеша­тельства в ход технологического процесса, не создают проблем с установкой датчиков, не требуют контакта с объектом исследова­ния, не порождают погрешностей взаимодействия инструмента с объектом и некоторых других неприятностей.

Еще один класс задач, где использование бесконтактных мето­дов и средств не только целесообразно, но и неизбежно (так как не имеет альтернативы) — измерение сверхвысоких температур (например, измерение температуры расплавленных металлов). Воз­можная верхняя граница контактно измеряемых температур со­ставляет +2000...+2500°С, поэтому измерения более высоких тем­ператур производят только бесконтактными методами.

Бесконтактные методы измерения реализованы в различных инфракрасных (ИК) средствах измерения (InfraRed Insrumtntal) – термометрах и измерительных преобрзователях, а также в оптических (Optical) термометрах – пирометрах. Инфракрасные измерители обеспечивают измерение температур в широком диа­пазоне температур: –50...+5000 °С. Оптические термометры (пиро­метры) принципиально пригодны лишь для измерения очень вы­соких температур, при которых поверхность объекта уже видимо светится (+600 °С и выше). Кроме того, точность и чувствитель­ность измерения оптическими термометрами невысоки.

Важными достоинствами ИК-термометров являются широкие диапазоны измеряемых температур, достаточно высокие точность, чувствительность и быстродействие, хорошие эксплуатационные характеристики, сравнительно невысокая стоимость. Однако не так просто реализовать основные преимущества ИК-термометров – для достоверного результата измерения требуются достаточно вы­сокая квалификация пользователя, знание специфики ИК-измерений, определенный опыт практических обследований.

^ Оптическое излучение. Любое тело, обладающее температурой выше абсолютного нуля (– 273 °С), имеет тепловое излучение. С ро­стом температуры увеличиваются амплитуда и частота колебаний молекул вещества тела. Человек своими органами чувств воспри­нимает тепло (осязанием) и свет (зрением). Физическая природа колебаний одна и та же (тепловая), но частота колебаний различ­на и зависит от конкретной степени нагретости объектов. При тем­пературе 600... 1000 °С и выше (в зависимости от материала объек­та) некоторое количество энергии тела излучается в видимой гла­зом части спектра.

В физике используется понятие «оптическое излучение», соот­ветствующее электромагнитному излучению с длинами волн X, расположенными в диапазоне 1 нм... 1 мм. Этот диапазон делится на три части.

Диапазон длин волн λ ультрафиолетового излучения состав­ляет 1,0 нм...0,38 мкм, видимого излуче­ния – 0,38...0,76 мкм, ИК-излучения – 0,76... 1000 мкм.

^ Устройство ИК-термометра. Методы и приборы бесконтактного ИК-измерения основаны на количественной оценке инфракрасно­го (теплового) излучения объекта. Тепловое излучение обладает прак­тически теми же свойствами, что и видимый человеком свет: рас­пространяется прямолинейно, способно отражаться, преломлять­ся, проникать сквозь некоторые тела, может быть сфокусировано оптической системой линз (не обязательно прозрачных) и т.п.

На рис. 99 показана упрощенная структура ИК-термометра.


Рис. 90. Упрощенная структура ИК-термометра: 1 – объект; 2 – объектив; 3 – приемник

Тепловое излучение поверхности объекта объективом прибора фокусируется на приемник, в роли которого часто выступает тер­мопара. ТермоЭДС термопары усиливается усилителем Ус, преоб­разуется аналого-цифровым преобразователем АЦП в цифровой код, который некоторое время хранится в запоминающем регист­ре Рг и представляется на индикаторе результатом измерения. Объек­тив ИК-измерителя одновременно выполняет функцию полосо­вого фильтра частот.

Инфракрасный измеритель может также содержать узлы связи (аналоговой или цифровой) с внешними устройствами. На рис. 90 показаны аналоговый АВ и цифровой ЦВ выходы. Наличие у ИК-термометра выхода аналогового сигнала, пропорционального те­кущему значению измеряемой температуры, позволяет подклю­чить прибор к внешнему аналоговому самопишущему прибору или к цифровому измерительному регистратору.

Для задач длительного мониторинга применяются также ИК измерительные преобразователи. Эти устройства не имеют инди­катора, их выходной аналоговый сигнал представлен пропорцио­нальным измеряемой температуре током или напряжением. Они предназначены для работы совместно с показывающими приборами или регистратора­ми в составе измерительных установок, комплексов или систем.

^ Специфика применения ИК-измерителей. При бесконтактных измерениях температуры с помощью ИК-термометров или преоб­разователей необходимо иметь в виду некоторые важные особен­ности.

Поскольку количество излучаемой объектом энергии зависит не только от температуры, но также и от качества поверхности тела, то для обеспечения достоверных результатов необходимо знать (или заранее экспериментально определить) значение коэффици­ента излучения (Emission) поверхности конкретного объекта ε. Абсолютно черное тело (ε = 1) гораздо лучше «отдает» теплоту, чем объект с блестящей гладкой поверхностью. Перед началом измере­ния необходимо ввести в прибор значение поправки, соответству­ющей свойствам материала поверхности объекта, и тогда прибор автоматически будет корректировать показания, компенсируя не­достаточную излучающую способность исследуемой поверхности. Такие поправки (так называемые поправки на «неполную черно­ту») обычно приводятся в Инструкции по эксплуатации или в паспорте ИК-прибора.

Если материал поверхности конкретного исследуемого объекта не описан в таблице поправок (коэффициентов излучения ε) при­бора, то можно оценить значение необходимой поправки экспе­риментально, например следующим образом. В тех случаях, когда это возможно, нужно измерить температуру исследуемой поверх­ности контактным термометром. Затем, перебирая разные значе­ния поправки ИК-термометра, следует добиться одинаковых по­казаний обоих приборов.

Инфракрасные термометры не рекомендуется использовать при исследовании блестящих, полированных поверхностей, неокисленных металлов типа хрома, алюминия, нержавеющей стали, латуни и т. п. Если исследуемая поверхность обладает малой излу­чающей способностью, целесообразно покрыть ее тонким слоем матовой черной краски или сажи. Это не повлияет на фактическую температуру поверхности, однако позволит повысить достовер­ность результатов, так как увеличит излучающую способность до ε = 0,9...0,96.

Следует помнить, что значение коэффициента излучательной способности зависит не только от качества поверхности, но и от температуры объекта.

^ 7.2. Измерение давления

Наряду с температурой и расходом давление является одной из важнейших физических величин, измеряемой в различных об­ластях человеческой деятельности. Методы и средства измерения давления основаны на использовании различных физических яв­лений, как давно известных, так и открытых сравнительно не­давно.

^ 7.2.1. Средства измерения давления

В настоящее время используются разнообразные методы и сред­ства измерения давления. Средства измерения давления (маномет­ры, вакуумметры, барометры) по физическим эффектам, положен­ным в основу принципа действия первичного измерительного пре­образователя (датчика), делятся на несколько групп. Наибольшее распространение получили жидкостные (в которых измеряемое дав­ление уравновешивается давлением столба жидкости); деформаци­онные (в которых значение деформации упругого чувствительного элемента пропорционально измеряемому давлению); тензометрические (основанные на тензометрическом эффекте материалов) средства измерения. Нас будут интересовать только элек­трические методы и средства измерения давления. В свою очередь электрические манометры делятся на аналого-вые и цифровые. Пер­вые – простые, достаточно надежные, дешевые приборы и пото­му широко распространены в задачах стационарных измерений на промышленных объектах. Цифровые манометры дают возможность организации автоматизированных измерений, позволяют решать как задачи длительной регистрации, так и задачи управления тех­нологическими процессами.

Переход к электрическим выходным сигналам первичных пре­образователей может быть организован по-разному. Для преобра­зования перемещения упругого элемента в электрический сигнал используются различные вторичные измерительные преобразовате­ли: индуктивные/индукционные (меняется индуктивность катушки или взаимная индуктивность двух катушек), трансформаторные (ме­няется выходное напряжение трансформатора), резистивные (меня­ется сопротивление, например, тензодатчика), емкостные (меняется емкость датчика) и др. Рассмотрим некоторые из возможных вари­антов преобразования давления в электрический сигнал.

^ Трансформаторные преобразователи. Один из вариантов пере­хода к электрическому выходному сигналу представлен на рис. 91.

В основе конструкции механической части – мембранная ко­робка /, герметично разделенная на две части упругой мембраной ^ 2. Под воздействием разности входных давлений р] и ръ поступаю­щих в обе части коробки 1, мембрана 2 прогибается, перемещая при этом сердечник 3 дифференциального трансформаторного преобразователя 4. перемещение сердечника изменяет исходное равновесие мостовой схемы, образованной двумя одинаковыми половинами L вторичной обмотки трансформатора и двумя равными резисторами R. При этом выходной сигнал моста Uвых изменяется пропорционально перемещению сердечника и, следовательно давлению или разности давлений р1 и р2. Это выходное напряжение Uвых можно просто измерить вольтметром переменного напряжения.


Рис. 91. Манометр с электрическим выходным сигналом: ^ 1 – мембранная коробка;

2 – мембрана; 3 – сердечник; 4 – дифференциальный трансформаторный преобразователь

Тензометрические преобразователи. Сегодня все большее распространение находят манометры с тензометрическими чувствительными элементами, которые закреплены на деформируемых под воздействием измеряемого давления поверхностях.

Тензометрический эффект проявляется в изменении электрического сопротивления проводников (или полупроводников) при изменении геометрии (например, при изгибе) проводника. Тензорезистроы часто выполняются из тонкой металлической фольги и представляют собой достаточно длинный проводник, компактно уложенный в плоскости поверхности упругой пластины или мембраны (рис.92).

Рис. 92. Тензометрический эффект: ^ 1 – упругая пластина; 2 – 1-й тензорезистор (R0+R);

3 – 2-й тензорезистор (R0 – R)
Обычно (для повышения чувствительности измерения) устанавливают два тензорезистора – на противоположные поверхности пластины. Эти датчики жестко крепятся (приклеиваются) к пластине и изгибаются вместе с ней.

Если исследуемое давление р изгибает упругую пластину вниз, то длина верхнего тензорезистора увеличивается, его сечение уменьшается и сопротивление его растет: R0 + R. У расположенного на нижней поверхности пластины датчика – все наоборот, в результате действия давления р его сопротивление уменьшается: R0 – R. Это изменение сопротивления легко могут быть представлены электрическим сигналом тока или напряжения. Обычно тензорезисторы включаются в мостовые схемы (неуравновешенные мосты) – рис. 92.

Выходное напряжение неуравновешенного моста Uвых зависит от изменения сопротивлений плеч моста. Достаточно иметь хотя бы один тензорезистор, но для обеспечения линейности преобразования целесообразно включать в соседние плечи моста два одинаковых (рис.101, а), но с различными знаками изменения сопротивления при изгибе пластин (сопротивление резистора R1+ увеличивается, а R2 – уменьшается). Для повышения чувствительногсти часто используют четыре тензорезистора (рис.92, б). Включают их таким образом, чтобы в соседних плечах моста стояли датчики с противоположными изменениями значений сопротивлений. Если в мостовой схеме все датчики одинаковы, имеют равные наминальные значения сопротивлений R и равные модули изменения  R при воздействии давления, то выходное напряжение моста Uвых можновыразить следующим образом:

Uвых = Uп ( R/ R),

где Uп – напряжение питания моста.

Далее это напряжение может быть измерено аналоговыми из­мерителями или преобразовано в цифровой код, который, в свою очередь, может быть выведен на цифровой индикатор, сохранен или передан другим устройствам. Структура собственно цифрового манометра практически не отличается от структуры других цифро­вых приборов.

Тензометрический принцип успешно используется и для по­строения дифференциальных манометров. При этом также может быть использована традиционная механическая конструкция: мем­бранная коробка из двух герметично изолированных частей (ка­мер), прогибающаяся мембрана между ними, на которой жестко закреплены (например, приклеены) тензорезисторы.

Современные микроэлектронные технологии обеспечивают широкие возможности создания миниатюрных чувствительных элементов (датчиков) манометров. Упрощенное устройство мик­роэлектронного резистивного тензометрического датчика показа­но на рис. 93.

На тонкой пластине кремния сформированы тензорезисторы (по тонко- или толстопленочной технологии) R1, R2, R3, R4 и соединительные проводники. Пластина закреплена на упругой мем­бране и деформируется (прогибается) вместе с ней.


Рис. 93. Устройство микроэлектронного резистивного датчика: ^ 1 – кремниевая пластина; 2 – мембрана

Сопротивление резисторов R2 и R4 при деформации значи­тельно увеличивается (до 20...50 %), а сопротивление резисторов R1, R3 практически не меняется. Все резисторы образуют мосто­вую схему, выходное напряжение которой определяется деформа­цией и, следовательно, значением измеряемого давления р.

На рис. 103 схематично показаны варианты конструктивного исполнения мембранной коробки датчиков для измерения абсо­лютного, относительного и дифференциального давлений.

На рис. 94, а приведен вариант мембранной коробки для из­мерения абсолютного давления (например, атмосферного pатм). Вариант на рис. 94, б предназначен для измерения относитель­ного (дифференциального) давления как разности между атмосферным и измеряемым. Измерение дифференциального рдиф как раз­ности между двумя измеряемыми давлениями р1 и р2 иллюстриру­ется на рис. 94, в.


а б в

Рис. 94. Варианты конструкции мембранной коробки датчиков

Существует понятие трансмиттера (Transmitter), что означает такой полный преобразователь, который содержит и датчик, и цепи нормирования (кондиционирования) сигнала, т.е. выполня­ет и первичное, и вторичное преобразование входной величины – давления. На выходе трансмиттера – унифицированный сигнал: 0... 100 мВ, или 0... 10 В, или 4...20 мА, или иные, принятые стан­дартными, уровни. Погрешности преобразования (типичные) – 0,5...2,5 %.

Емкостные преобразователи. Помимо резистивных применяют­ся и емкостные датчики давления. В емкостных датчиках мембрана выступает в роли одной из пластин конденсатора (рис. 95). Изме­нение ее положения приводит к изменению емкости датчика и затем, например, к изменению выходного напряжения моста пе­ременного тока.

Благодаря достижениям микроэлектронной технологии га­баритные размеры таких датчиков могут быть чрезвычайно ма­лыми (единицы – десятки квадратных миллиметров). Кроме того, на кремниевой пластине могут размешаться и некоторые элемен­ты вторичного преобразования, например, мостовые схемы, уси­лители.

Рис. 95. Емкостный тензометрический датчик
^ 7.3. Измерение скорости движения потока вещества и его расхода

7.3.1. Основные понятия

Рассмотрим довольно распространенные задачи – измерения скорости движения потока вещества и его расхода. Эти физические величины часто связаны между собой и рассматривать их отдельно нецелесообразно.

При выборе измерителя расхода и/или скорости движения для конкретного эксперимента, помимо общих для всех средств изме­рений критериев (метрологические и эксплуатационные характе­ристики, начальная цена и стоимость обслуживания и др.), необ­ходимо учитывать и специфические факторы измеряемой величи­ны. Это – характер состояния вещества (жидкие, газообразные вещества, пар, многофазные среды, сыпучие вещества, крупные твердые предметы и др.), свойства исследуемой среды (плотность, вязкость, сжимаемость, химический состав, электропроводность, агрессивность, абразивность, смазывающие способности и др.), ее текущие характеристики (температура, давление, многофазность состояния, влажность – особенно для сыпучих сред). Немаловаж­ными являются выбранные модели происходящих процессов – статические или динамические. Кроме того, следует учитывать ус­ловия и возможности монтажа средства измерения, возможные размеры, геометрию и материал трубопровода, условия проведе­ния эксперимента, требования дополнительного оборудования, не­обходимость внешнего источника питания, время непрерывной работы, требуемую периодичность поверки и т.д. Очевидно, что при таком числе различных критериев проблема выбора становит­ся достаточно серьезной, требующей квалифицированного и про­фессионального подхода.

Под расходом будем понимать количество вещества, проходящее через сечение потока в единицу времени.

Англоязычные термины измерителя скорости – Vе1оcitу Меtеr, измерителя расхода – Flowmeter.

Рассмотрим связь скорости и расхода на примере трубопрово­да, в котором течет жидкость. При выполнении определенных ус­ловий (трубопровод на достаточной длине прямой и полностью заполнен жидкостью, движение ее равномерное, внутреннее сечение трубопровода на достаточной длине постоянно и т.п.) зна­чение текущего расхода Q рассчитывается по формуле

Q = ρvS = ρv (πd2/4),

где ρ – значение плотности жидкости; v скорость движения потока; S – площадь внутреннего сечения трубопровода; d внут­ренний диаметр трубопровода.

Существуют понятия текущего (мгновенного) Q и интеграль­ного (суммарного) G расходов за определенный интервал времени t. Интегральный расход G в общем случае есть интеграл функции мгновенного (текущего) расхода q(t) на интервале t. В частном случае постоянного значения текущего расхода Q на интервале t интегральный расход G определяется простым произведением:

G = Qt.

Приборы для измерения интегрального значения часто называ­ются счетчиками количества (Flow Totalizer). Современные прибо­ры обычно обеспечивают оба режима работы.

Различают объемный расход (выражаемый единицами объема – л/с, м3/ч и т.п.) и массовый (выражаемый единицами массы – кг/мин, т/ч и т.п.). Объемный Qm и массовый Qm расходы связаны плотностью ρ среды исследуемого потока:

Qm = ρQV.

^ 7.3.2. Методы и средства измерения

В настоящее время применяются несколько десятков различных способов измерения скорости движения и расхода вещества. В за­висимости от вида, состава и свойств исследуемой среды приме­няют различные методы и средства измерения скорости и расхода.

Наиболее распространены сегодня следующие принципы (и приборы на их основе): манометрические (работающие на пере­менных или постоянных перепадах давления, создаваемых пото­ком измеряемой среды); тахометрические (турбинные, крыльчатые, шариковые); электромагнитные (индукционные, основанные на эффекте электромагнитной индукции); ультразвуковые (осно­ванные на измерении разницы времен прохождения звукового сигнала в движущейся среде или на измерении изменения частоты отраженного ультразвукового сигнала); вихревые (основанные на оценке частоты колебаний завихрений потока); тепловые (осно­ванные на изменении температуры датчика, обтекаемого движу­щейся средой).

Рассмотрим некоторые электрические методы и средства изме­рения скорости и расхода из этих наиболее распространенных.

^ Тахометрические расходомеры. В обшей массе различных расхо­домеров доля приборов этого типа (Turbine Flowmeter) составляет около 10 %. Тахометрические расходомеры делятся на два типа: ро­торные и безроторные. Работа устройств первого типа основана на измерении частоты вращения роторного устройства (турбинки или крыльчатки), помешенного в поток вещества. Второй тип основан на измерении скорости кругового движения шарика в искусствен­но закрученном потоке измеряемой среды.

Принцип действия наиболее простого и распространенного ва­рианта расходомеров первого типа основан на пропорциональной зависимости частоты вращения турбинки (встроенной в трубопро­вод) от линейной скорости движения потока, т.е. от значения рас­хода. Механическая величина – угловая скорость вала турбинки – может быть измерена тахометром (аналоговым или цифровым) или преобразована с помощью тахогенератора в электрический сиг­нал, который легко поддается измерению. Возможен и частотно-импульсный выход. Такой сигнал также очень просто может быть преобразован в цифровой код.

На рис. 96 показана упрощенная конструкция тахометрического безроторного (и, следовательно, бесподшипникового) ша­рикового расходомера.

Подвижным элементом является шарик (сделанный из ферро­магнитного материала с полимерным или фторо­пластовым покрытием), который под действием закрученного по­тока измеряемой среды совершает вращательное движение вокруг оси трубопровода. Закручивание потока обеспечивает жестко закреп­ленный вдоль оси трубопровода неподвижный многоходовой винт.

Ограничивающее кольцо удержи­вает шарик. Угловая скорость дви­жения шарика пропорциональ­на линейной скорости движения потока (и, следовательно, объем­ному расходу). Периодическое прохождение шарика вблизи ин­дуктивного преобразователя ме­няет магнитное сопротивление магнитопровода преобразовате­ля. При этом на выходе преобра­зователя возникает импульсная последовательность. Таким обра­зом, индуктивный преобразова­тель преобразует механическое движение шарика в частоту им­пульсного электрического сигна­ла, пропорциональную частоте вращения.


Рис. 96. Тахометрический шариковый расходомер: 1 – поток; 2 – закрепленный винт; 3 – индуктивный преобразователь; 4 – кольцо; 5 – шарик; 6 – закрученный поток;

7 – трубопровод

Подобные расходомеры ра­ботают в диапазонах 0,025...400 м3/ч при диаметрах трубопровода 20... 150 мм. Клас­сы точности – 1,0...2,5%, тем­пература измеряемой среды – 5...100°С.

Электромагнитные (индукци­онные) расходомеры. Это также один из самых распространен­ных типов в практике промышленных измерений. Около 15 % всех стационарных расходоме­ров в мире – электромагнитные (Electromagnetic Inductance Flowmeter).

Электромагнитный (индукционный) расходомер применяется для электропроводных жидкостей и основан на эффекте электро­магнитной индукции. При движении потока электропроводной жидкости в магнитном поле в нем наводится ЭДС. Упрощенная конструкция такого расходомера показана на рис. 97.


Рис. 97. Электромагнитный (индукционный) расходомер: 1 – обмотка;

2 – магнитопровод; 3 – электроды; 4 – трубопровод; 5 – измеритель ЭДС

В трубопроводе из немагнитного материала течет электропро­водная жидкость, которая пронизывается переменным магнитным полем, создаваемым электромагнитом (обмотка на магнитопроводе). Электроды проходят сквозь стенки трубопровода и находятся в контакте с жидкостью. По закону электромагнитной индукции в потоке жидкости (как в любом перемещающемся в магнитном поле проводнике) возникает переменная ЭДС, которую оценивает из­меритель. Значение ЭДС определяется частотой и индукцией маг­нитного поля, внутренним диаметром трубы и, естественно, ско­ростью движения жидкости. Таким образом, найдя скорость и зная сечение трубы, можно оценить расход.

Погрешность таких расходомеров лежит в диапазоне 1 ...2 %. Расходомеры этого класса малоинерционны, т.е. обеспечивают достаточно высокое быстродействие, что особенно важно для оп­ределения текущих (мгновенных) значений сравнительно быст­ро меняющегося расхода. Преимуществами этих расходомеров является также и то, что они не изменяют проходного сечения трубопровода, не содержат движущихся частей, могут работать с загрязненными и многофазными средами, агрессивными жид­костями.

Единственный их недостаток – требование опре­деленной электропроводности жидкости, обычно – не менее 10 – 8 См/м.

В настоящее вре­мя для измерения скорости и расхода жидкости широко применя­ются ультразвуковые методы и средства. Доля ультразвуковых рас­ходомеров (Ultrasonic Flowmeter) как стационарных, так и пере­носных, в общей массе расходомеров составляет примерно 10 %. Ультразвуковые (УЗ) методы и средства измерения скорости и расхода хорошо отвечают специфическим требованиям экспресс-обследований, поскольку они не требуют «врезки» в трубопровод, остановки технологических процессов, перекрытия вентилей, сня­тия нагрузки и т.п. Датчики автономных переносных приборов – на­кладные. Они легко устанавливаются на внешней поверхности тру­бопровода и снимаются, поэтому вся подготовка к эксперименту занимает всего несколько минут.

Использование УЗ-измерителей скорости и расхода даст ряд серьезных преимуществ:

  • не возникает уменьшения давления в трубопроводе и отсут­ствует какое-либо влияние прибора на поток;

  • отсутствует возможная коррозия деталей собственно прибора;

  • отсутствуют движущиеся части (и как следствие отсутствуют изнашиваемые детали, обеспечены высокая надежность и значи­тельный срок службы приборов);

  • простота работы с автономными приборами (установка, пе­ренос, замена).

Кроме того, важными достоинствами УЗ-приборов являются широкие диапазоны измерения скорости и расхода, широкий ди­апазон возможных диаметров трубопроводов, достаточно высокая точность, хорошие эксплуатационные характеристики. Главный недостаток УЗ-расходомеров – сравнительно высокая стоимость (как следствие сложности их устройства).

В современных УЗ-расходомерах применяются два метода, основанные на двух различных принципах измерения скорости по­тока (рис. 98):


а б

Рис. 98. Принципы УЗ-измерения скорости потока: а – временной; б – частотный;

1 – датчик


  • измерение разницы времен задержки распространения УЗ-сигнала (Transit Time Technology) в движущейся среде;

  • измерение изменения частоты УЗ-сигнала, отраженного от движущихся частиц, основанное на эффекте Доплера.

В первом методе измеряется интервал времени задержки рас­пространения УЗ-спгнала в движущейся среде. Эта задержка за­висит от направления и скорости движения среды (потока). На рис. 98, а приведена иллюстрация варианта этого метода.

На трубопроводе устанавливаются два датчика-приемника (по­очередно выступающих в роли излучателя и приемника сигнала).

Ультразвуковой сигнал (частота которого обычно 0,1... 1 МГц), из­лучаемый левым датчиком и проходящий сквозь среду в направле­нии движения потока (по потоку), достигает приемного (право­го) датчика через меньшее время задержки, чем сигнал, идущий от правого датчика навстречу потоку (против потока), который доходит до приемника через большее время задержки. Измерив разницу этих интервалов времени задержки прохождения сигна­лов, т.е. t, можно оценить скорость движения среды и затем, зная внутреннее сечение трубопровода, вычислить расход.

Электронная начинка аппаратуры в этом методе, естественно, должна быть достаточно быстродействующей, так как необходима высокая разрешающая способность при измерении очень малых интервалов времени t – единицы наносекунд. Рас­ход рассчитывается как произведение скорости на внутреннее се­чение трубопровода в месте установки датчиков. Метод измерения времени задержки хорош для чистых жидкостей, без примесей, т.е. гомогенных (однородных).

^ Второй метод (см. рис. 98, б) основан на известном в физике эффекте Доплера – эффекте изменения частоты сигнала, отра­женного от движущегося объекта. В настоящее время широко при­меняются цифровые допплеровские УЗ-измерители расхода (Digital Doppler Ultrasonic Flowmeter). Сигнал известной частоты распрос­траняется в жидкой среде, отражается от движущихся в потоке твердых частиц, пузырьков воздуха, локальных различий в плот­ностях среды и т.п. Отраженный от движущихся частиц УЗ-сигнал с помощью преобразования Фурье трансфор­мируется из временной области в частотную. Поскольку спектр отраженного сигнала достаточно широк, то находится усреднен­ная частота. Далее вычисляется разница частоты исходного сигна­ла (сигнала передатчика) и полученной усредненной частоты от­раженных сигналов. Эта разница частот в дальнейшем и использу­ется для определения скорости движения потока и затем для вы­числения расхода.

Типичный современный микропроцессорный УЗ-измеритель скорости и расхода является портативным прибором. Он позволяет измерять как мгновенный (текущий), так и суммарный расход жид­кости за некоторый период времени. Накладные датчики прибора легко устанавливаются на поверхности трубопровода. Подготовка к измерению занимает 3...5 мин.

^ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРЫ


  1. Блинов, О.М. Теплотехнические изме­рения и приборы: учебник для вузов / О.М. Блинов, А. М. Беленький, В. Ф. Бердышев. – М.: Металлургия, 1993.

  2. Измерения в электронике: справочник / В.А.Кузнецов [и др]; под ред. В.А.Кузнецова. – М.: Энергоатомиздат, 1987.

  3. Измерение электрических и неэлектрических величии: учеб. пособие для вузов/ Н.Н. Евтихиев [и др].; под ред. Н.Н.Евтихиева. – М.: Энергоатомиздат, 1990.

  4. Мейзда, Ф. Электронные измерительные приборы и методы измере­ний: пер. с англ. – М.: Мир, 1990.

  5. Методы электрических измерений: учеб. пособие для вузов / Л.Г.Журавин [и др].; под ред. Э.И.Цветкова. – Л.: Энергоатомиздат, 1990.

  6. Метрология и электроизмерительная техника: учеб. пособие для ву­зов / В.И. Диденко [и др].; под ред. В.Н. Малиновского. – М.: Изд-во МЭИ, 1991.

  1. Преображенский, В.П. Теплотехнические измерения и приборы: учеб­ник для вузов / В.П.Преображенский. – 3-е изд., перераб. – М.: Энергия, 1978.

  2. Тюрин, И. И. Введение в метрологию / И.И.Тюрин. – М.: Изд-во стандартов, 1973.


ОГЛАВЛЕНИЕ
Введение…………………………………………………...…………3
1   ...   8   9   10   11   12   13   14   15   16

Похожие:

Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Гродненский государственный...
С. Е. Витун, заведующий кафедрой финансов и кредита уо «Гродненский государственный университет имени Янки Купалы», кандидат экономических...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Белорусский государственный...
Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «Гродненский государственный медицинский университет» Кафедра биохимии
Рекомендовано Центральным научно-методическим советом уо “Гргму” (протокол № от 10. 06. 20010 г.)
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconМинистерство образования и науки РФ федеральное государственное бюджетное...
«Московский государственный университет технологий и управления имени К. Г. Разумовского»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКонкурс «Лучший инновационный проект студентов и аспирантов» проводится...
«Чувашский государственный университет имени И. Н. Ульянова» в рамках всероссийского фестиваля науки, организуемого Министерством...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный технический университет...
Список использованных источников
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconГосударственное образвательное учреждение высшего профессионального образования
Самарский государственный аэрокосмический университет имени академика С. П. Королева”
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКафедра акушерства и гинекологии
Государственное образовательное учреждение высшего профессионального образования «тамбовский государственный университет имени г....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница