Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов


НазваниеУчреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов
страница9/16
Дата публикации05.04.2013
Размер2.36 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   ...   5   6   7   8   9   10   11   12   ...   16
ГЛАВА 4.^ АНАЛОГОВЫЕ МЕТОДЫ И СРЕДСТВА

РЕГИСТРАЦИИ

4.1. Общие сведения

Под регистрацией будем понимать процедуру запоминания и хра­нения в любой форме достаточно больших объемов информации. Хо­рошо всем знакомы примеры бытовых регистрирующих средств измерений: медицинский ртутный термометр, индукционный элект­рический счетчик активной энергии, спортивно-медицинский ди­намометр. Но эти устройства регистрируют только одно (обыч­но последнее) значение измеряемой величины, т.е. являются реги­страторами для статических моделей объекта исследования. Обычный фотоаппарат также может быть отнесен к статическим регистрато­рам, правда, не измерительным. Кинематограф, видеотехника  это уже динамическая регистрация (но тоже не измерительная).

К группе аналоговых динамических методов и средств измери­тельной регистрации относятся такие, в которых бесконечное мно­жество значений входного непрерывного (аналогового) сигнала преобразуется в другое бесконечное множество значений выход­ного сигнала-образа (в частности, видимого изображения), пред­ставленного в различных аналоговых формах (диаграмма на бума­ге, запись на магнитном носителе, изображение на экране и т.п.) с заданной достоверностью.

К цифровым методам отнесем такие, в которых бесконечное множество значений входных непрерывных сигналов преобра­зуется в конечное множество дискретных во времени и кванто­ванных по уровню значений. При этом выходная информация может быть представлена в аналоговой (точнее псевдоаналого­вой) форме.

В настоящее время в практике динамических исследований чаще других используются следующие основные методы аналоговой реги­страции (Analog Recording):

  • видимая запись на поверхности твердого носителя (бумага, пленка);

  • запись на магнитном носителе;

  • хранение электрического заряда в диэлектрике.

Каждый из этих методов можно классифицировать на группы; Некоторые из них представлены достаточно разнообразно.

^ Первый метод реализуется в самопишущих приборах и светолучевых осциллографах. Второй метод представлен магнитографами, которые, кстати сказать, являются измерительными преобразова­телями, а не приборами; третий  аналоговыми запоминающими осциллографами.

В настоящее время среди средств аналоговой регистрации наи­более широко распространены электронные самопишущие при­боры для регистрации различных сравнительно медленно меняю­щихся величин (температуры, относительной влажности, давле­ния, электрических параметров и др.). До сих пор, если требуется регистрировать достаточно высокочастотные процессы (полоса частот сотни герц  единицы килогерц), используются светолучевые осциллографы. В тех ситуациях, где требуется длительная мно­гоканальная регистрация, возможность работы в полевых услови­ях, применяются измерительные магнитографы.

Аналоговые средства регистрации имеют ряд серьезных недостат­ков: сравнительно невысокую точность (1,0... 5 %), не всегда доста­точное число входных каналов, невысокое быстродействие, невысо­кую надежность (вследствие наличия механических узлов), невозмож­ность автоматизированной обработки результатов записи. Кроме того, их практически невозможно использовать в информационно-из­мерительных системах, системах автоматизированного управления.

Основная тенденция современной измерительной техники  решение задач измерения, регистрации, анализа цифровыми ме­тодами и средствами. Одно из важных преимуществ цифровых из­мерительных регистраторов – легкий переход от процедуры реги­страции к процедуре автоматизированного цифрового анализа. Оче­видно, что с дальнейшим развитием цифровой и аналоговой мик­роэлектроники (схемотехники, технологии), вычислительной тех­ники стоимость цифровых решений в деле регистрации процессов будет быстро снижаться, область применения цифровых методов и средств будет расширяться. Следовательно, роль аналоговых реги­страторов будет и в последующем постоянно уменьшаться.

^ 4.2. Самопишущие приборы

Как и показывающие, аналоговые самопишущие приборы (СП) разделяются на электромеханические и электронные.

В электромеханических СП могут применяться различные систе­мы преобразователей электрической величины в механическую. Но чаще всего  это магнитоэлектрический измерительный механизм.

Принцип действия простейшего электромеханического (магни­тоэлектрического) СП основан (рис. 60) на взаимодействии под­вижной катушки (рамки) 3 с током (пропорциональным исследу­емому сигналу) с полем постоянного магнита 1.



Рис. 60. Упрощенное устройство электромеханического СП:

1 постоянным магнит; 2 ось; 3 катушка; 4 перо; 5 двигатель;

6 бумага; 7 стрелка; 8 шкала

Движение  поворот на угол α(t)  катушки 3, закрепленной на оси 2, передается отсчетному устройству (ОУ), состоящему из стрелки 7 и шкалы 8, а также регистрирующему устройству (РУ) образованному пером 4 и движущейся бумагой 6. Развертка во вре­мени осуществляется равномерным перемещением диаграммной бумаги 6, благодаря вращению вала двигателя 5.

Обобщенная структура электромеханического СП показана
на рис. 61, а. Входной сигнал X(t) поступает в измерительную
цепь ИЦ, в которой осуществляются вспомогательные преобразования (масштабирование сигналов, преобразование различных
величин в ток), и далее, обычно в виде тока i(t), на измери­тельный механизм ИМ. Выходная величина ИМ  угол поворота α(t)  определяет показания ОУ и положение пишущего органа (пера) РУ.

Все достоинства обычного магнитоэлектрического механизма сохраняются в СП, но, вследствие большего необходимого вра­щающего момента (причина  заметное трение пишущего органа о бумагу), потребляется большая мощность от источника исследу­емого сигнала.

Типичные значения классов точности электромеха­нических СП 0,5...2,5 %. Полоса частот регистрируемых сигналов узкая  0...5 Гц.


Рис. 61. Обобщенные структуры электромеханического (а) и электронного (б) СП

Электронные СП отличаются от электромеханических как по структуре (рис. 61, б), так и по конструкции. Классический маг­нитоэлектрический измерительный механизм заменен реверсив­ным двигателем, в схеме присутствуют различные аналоговые из­мерительные преобразователи (например, усилители, преобразо­ватели переменного напряжения в постоянное и др.).

Развертка во времени выполняется так же, как и в электроме­ханических СП, т.е. дополнительным двигателем, равномерно пе­ремещающим бумагу.

В основу работы электронных СП положен принцип уравнове­шивающего (компенсирующего) преобразования, в соответствии с которым электромеханическая отрицательная обратная связь (ОС) обеспечивает уравновешивание входного сигнала, например на­пряжения UY (t), меняющимся компенсирующим напряжением Uк(t).

Разница U(t) входного UY (t) и компенсирующего Uк(t) сиг­налов поступает на усилитель Ус, выходное напряжение которого управляет реверсивным двигателем РД. Образованный угол пово­рота α(t) определяет показания ОУ и РУ. Компенсирующее напря­жение Uк(t) формируется узлом ОС и меняется таким образом, что уменьшает разницу потенциалов U(t) на входе усилителя до минимального, различаемого усилителем, значения.

Узел ОС может быть реализован, например реохордом, движок которого перемещается валом РД. Формируемое при этом компен­сирующее напряжение Uк(t) уравновешивает входное напряжение UY (t), которое определяет положение стрелки ОУ и пера РУ по оси ординат Y .

Качество уравновешивания и, следовательно, метрологические (статические) характеристики в большей мере определяются уси­лителем Ус и узлом отрицательной обратной связи. Динамика элек­тронных СП характеризуется верхними частотами исследуемых сиг­налов до значений 0,5...2 Гц.

Существует большой класс СП, содержащих преобразователи входных периодических напряжений и токов в постоянные значе­ния (часто  в средние квадратические). Не следует путать частот­ные свойства входных преобразователей таких СП (обычно  до единиц  десятков килогерц) с динамическими возможностями собственно механизма (обычно — единицы герц).

Англоязычные термины этого класса регистраторов: Recorder, Paper Recorder, Y T Recorder.

В некоторых моделях СП применяется термическая (тепловая) регистрация. При этом РУ представляет собой нагретый стержень (тепловое перо), который, перемещаясь, воздействует на термо­чувствительный носитель (термобумагу), оставляя видимый след.

^ Быстродействующие самопишущие приборы (БСП) в отличие от обычных СП, имеют более высокое быстродействие. Недоста­точно хорошая динамика обычных СП заставила искать конструктивные и технологические решения, обеспечивающие более широкую полосу частот. В основе этих решений лежат использование увеличенного противодействующего момента и сознательное уменьшение размаха (амплитуды) колебаний подвижной части. Диапа­зоны частот исследуемых сигналов в БСП 0... 150 Гц. Существует разновидность БСП, основанная на струйной записи (отклонение меняющимся электрическим полем заряженной струи краски). Такие приборы обеспечивают еще более высокие динамические ха­рактеристики (до 2 кГц), благодаря меньшей, чем в механической системе, массе подвижной части (струи). Однако из-за своей сложной конструкции и специфики обслуживания они распространены не так широко.

^ Двухкоординатные самопишущие приборы (ДСП) предназначе­ны в основном для построения функциональных зависимостей меняющихся сигналов X(t) и Y(t). Такой прибор может выступать в роли характериографа, инструмента для построения, например, зависимости вход  выход различных четырехполюсников.



Рис. 62. Конструкция двухкоординатного самопишущего прибора: 1 каретка; 2 рейка; 3 реверсивный двигатель оси Y; 4 реверсивный двигатель оси X; 5 бумага; 6 перо

Конструкция ДСП (рис. 68) обеспечивает перемещение пера не­зависимо по двум координатам (Y и X). Каретка 1, на которой закреп­лено перо (фломастер, стеклянный капилляр, карандаш и т.п.) 6, благодаря реверсивному двигателю 3 и нерастяжимой нити, движется по рейке 2. Это определяет положение пера по оси ординат (оси Y). Рейка 2 с расположенной на ней кареткой 1 может пере­мещаться параллельно-поступательно при вращении вала второго реверсивного двигателя 4, что определяет положение пера по оси абсцисс (оси X). Лист бумаги 5 в этой конструкции неподвижен и по окончании регистрации несет двухкоординатное изображение. Структура ДСП содержит два обычно идентичных канала уравновешивающего преобразования Y(t) и Х(t), которые обеспечивают отклонения, соответственно, по осям ординат и абсцисс.

Динамические характеристики ДСП аналогичны характери­стикам электронных СП.

Существует разновидность конструкции ДСП, в которой по одной из осей перемещается лист бумаги. При этом рейка ^ 2 с закрепленным на ней реверсивным дви­гателем 3 неподвижна. По рейке перемещается каретка 1 с пером 6 (как и в предыдущем варианте), что определяет положение пера по оси Y , а положение пера относительно листа бумаги по оси X определяется перемещением собственно листа 5. Эту функцию выполняют реверсивный двига­тель 4 и прижимные ролики. Окончательный результат регист­рации тот же  двухкоординатное изображение (Y X). Некоторое преимущество подобной конструкции заключается в меньшей механической инерционности тракта X, поскольку масса переме­щаемого листа бумаги меньше суммарной массы рейки, за­крепленного на ней двигателя и каретки с пером.

Двухкоординатный самопишущий прибор может быть ис­пользован и в режиме обычного СП (режим Y Т). Для этого вместо канала (обычно сменного блока) X(t) используется канал (сменный блок) развертывающего линейно изменяющегося на­пряжения.

Существуют устройства, внешне похожие на ДСП, так называ­емые плоттеры (Plotters), входными сигналами для которых слу­жат цифровые (логические) сигналы. Плоттер не является в пол­ном смысле измерительным прибором, а выступает обычно в ка­честве периферийного устройства графического вывода для средств вычислительной техники.

В настоящее время широко распространен еще один самостоя­тельный класс приборов, которые могут выдавать результат реги­страции в виде диаграммы сигнала на бумаге  цифровые измери­тельные регистраторы (Transient Memory Recorder, ADC Recorder). Но внутреннее содержание таких приборов совершенно другое. Ос­новными узлами их являются аналого-цифровой преобразователь (АЦП) и достаточно большого объема запоминающее устройство. Полоса частот исследуемых сигналов у таких регистраторов опреде­ляется быстродействием АЦП и значительно шире (может достигать единиц  десятков мегагерц). Зарегистрированный массив кодов за­тем преобразуется в графический образ входного сигнала на бумаге.

^ 4.3. Светолучевые осциллографы

Динамика светолучевых осциллографов (СЛО) существенно луч­ше, чем у самопишущих приборов СП, поскольку масса подвиж­ной части (рамки) осциллографического гальванометра СЛО суще­ственно меньше массы катушки или ротора двигателя СП. Понят­но, что отклонять поток света легче, чем поворачивать стрелку ОУ и тем более пишущий орган (например, стеклянный капилляр) РУ.

В основе СЛО (рис. 63) лежит классический принцип магнитоэлектрического механизма  взаимодействие тока рамки б гальвано­метра с полем постоянного магнита 5. Рамка висит на натянутых упругих растяжках, на одной из которых закреплено крошечное зер­кало 4 (обычно кусочек фольги). Поворот рамки (и, следовательно, зеркальца) приводит к отклонению потока света, падающего на зеркальце, и к отклонению светового пятна на светочувствитель­ном носителе (фотобумаге или фотопленке) 8 и/или матовом экра­не 10. Развертка во времени осуществляется равномерным движе­нием носителя (бумаги, пленки) и вращением зеркального много­гранника 9. Поток света (спектр которого обычно смещен в ультра­фиолетовую область) формируется источником 1, конденсором 2 (задача которого  формирование параллельного потока из расхо­дящегося) и диафрагмой 3 (предназначенной для «вырезания» узкого пучка для каждого отдельного гальванометра  канала). Осциллографический гальванометр (ОГ)  Oscillographic Galva­nometer  содержит рамку, растяжки, токоподводы, зеркальце. Он выполнен в виде неразборной конструкции и представляет собой миниатюрный цилиндр длиной 60...90 мм и диаметром 4...6 мм, в котором имеется прозрачное окно для узкого потока света. Корпус ОГ выполнен из немагнитного материала, но в него встроены эле­менты общего магнитопровода. В случае использования жидкостно­го успокоения корпус ОГ заполнен неорганической прозрачной жид­костью, обладающей определенной вязкостью.


Рис. 63. Устройство светолучевого осциллографа:

^ 1  источник света; 2  конденсор; 3  диафрагма; 4  зеркало; 5  постоянны

магнит; 6  рамка; 7  полупрозрачное зеркало; 8  фотопленка (фотобумага)'

9  зеркальный многогранник; 10  матовый экран

Светолучевые осциллографы  многоканальные приборы, по­этому содержат несколько ОГ.

Конструктивно все ОГ объединены общим магнитопроводом.

Важной характеристикой ОГ является его чувствительность S, которая определяется отношением отклонения пятна на фотопленке (бумаге) или на экране к току, вызывающему это отклонение. Отклонение пятна зависит не только от текущего в ОГ тока, но и от «длины луча», т.е. от расстояния от зеркальца до пленки (бума­ги) или до экрана. Поэтому принято приводить значение чувствительности к длине луча L = 1 м. Поэтому размерность чувствительности выглядит, например, так: S = 20 мм/(мА·м). Иногда в паспортных данных ОГ задается обратная чувствительности величина – постоянная ОГ. Зная значение чувствительности и имея результат регистрации, можно определить текущие значения тока, протекавшего в ОГ во время эксперимента. Если с помощью СЛО зарегистрирован некий сигнал, известны значения чувствительности ОГ и скорости движения фотопленки (бумаги), то можно найти его основные параметры. Предположим, что нас интересует амплитудное значение Im и период T колебаний синусоидального сигнала. Пусть линейные размеры этих параметров на диаграмме равны, соответственно, 40 и 100 мм. Чувствительность ОГ известна: S = 20 мм/(мА·м), скорость движения фотопленки v = 500 мм/с, длина луча L = 1 м.

Пренебрегая всеми погрешностями, найдем интересующие нас параметры.

Амплитудное значение тока Im = 40 мм · мА · м / (20 мм · 1 м) = 2 мА. Период колебаний сигнала T = 100 мм · с / 500 мм = 0,2 с.

Выбирая ОГ для эксперимента, прежде всего следует руководствоваться его амплитудно-частотной характеристикой. Это особенно важно при исследовании несинусоидальных процессов с высшими гармониками. Затем определяют необходимую чувствительность для получения на диаграмме амплитудных параметров достаточного размера. На этом этапе может возникнуть потребность применения шунтов или добавочных сопротивлений. И, наконец, задают такую скорость движения носителя, которая обеспечит нормальное воспроизведение временных параметров и ВТО же время позволит записать фрагмент процесса достаточной продолжительности.

Основные достоинства СЛО:

  • многоканальность (до 30 сигналов могут регистрироваться одновременно);

  • возможность получения твердой копии исследуемых сигналов;

  • широкая (по сравнению с СП) полоса частот исследуемых сигналов (до 30 кГц);

  • отсутствие механического контакта регистрирующего органа и носителя.

Основные недостатки СЛО:

  • сложность оптико-механической конструкции и, следовательно, сравнительно невысокая надежность и высокая стоимость;

  • невысокая точность получаемых результатов (единицы процентов);

  • узкая (по сравнению с электронно-лучевым осциллографом) полоса частот сигналов;

  • необходимость специальных расходных материалов (фотобумаги или пленки) и дополнительной их обработки;

  • сравнительно большая мощность потребления от источника исследуемого сигнала.

Англоязычная терминология СЛО – Oscillographic Recorder, Ultra-Violett (U-V) Recorder.
^ 4.4. Измерительные магнитографы
В отличие от предыдущих регистраторов, измерительные магнитографы – ИМГ (Magnet Tape Recorder) – являются не приборами, а измерительными преобразователями, поскольку не имеют отсчетных устройств (индикаторов).

Принцип магнитной записи основан на воздействии магнитного поля (образованного переменным током) на положение магнитных доменов в материале носителя (ленте, проволоке).

Основным элементом магнитной головки является магнитопровод с намотанной на него катушкой. При протекании переменного тока i(t) в катушке в магнитопроводе возникает магнитный поток φ(t). Магнитопровод имеет небольшой воздушный зазор, в котором замыкаются магнитные силовые линии потока φ(t). Этот воздушный зазор соприкасается с магнитным носителем, домены которого реагируют на магнитный поток и меняют (и затем сохраняют) свое положение. Таким образом, если носитель равномерно перемещается, на нем запоминаются все изменения во времени магнитного поля в зазоре. Поскольку современные ИМГ, как правило, многоканальны, то магнитные головки записи (ГЗ) содержат несколько отдельных самостоятельных элементов (магнитопроводов с катушками). Поэтому на но­сителе (магнитной ленте) при записи исследуемого процесса фор­мируются несколько независимых дорожек с синхронно записан­ными входными сигналами.

Головки воспроизведения (ГВ) по конструкции аналогичны головкам записи, но их задача воспринять информацию, сохра­ненную на носителе. Расположение магнитных доменов на носите­ле хранит записанную информацию, которая и воспринимается ГВ. Изменения выходного сигнала ГВ пропорциональны изменениям ранее записанных входных токов i(t).

В аналоговых ИМ Г применяются два способа магнитной записи: прямая запись (Direct Recording  DR) и запись модулированным (чаще частотно-модулированным  ЧМ, Frequency Modulation  FM) сигналом.

^ Первый способ (прямая запись) обеспечивает простое устройст­во, но имеет некоторый недостаток  полоса частот исследуемых сигналов начинается не с нуля, а с нескольких сотен герц, поскольку производная (т.е. изменение во вре­мени) магнитного потока на низких частотах недостаточно велика для воздействия на магнитные домены носителя.

^ Второй способ (частотно-модулированная запись) основан на переносе спектра входного сигнала в область более высоких час­тот, поэтому ИМГ с ЧМ-записью могут регистрировать медленно меняющиеся (и даже постоянные) сигналы (рис. 64).

Верхняя граница полосы частот в обоих вариантах примерно одинакова и составляет десятки – сотни килогерц или даже еди­ницы мегагерц.

Характеристики применяемых в нынешней практике ИМГ весь­ма разнообразны. Скорость движения ленты: от единиц миллимет­ров в секунду до единиц метров в секунду. Ширина ленты (диа­метр проволоки): от долей миллиметра до единиц сантиметров. Время возможной регистрации: от долей секунды до нескольких суток. Масса устройств: от сотен граммов до единиц килограммов.


Рис. 64. Магнитограф с частотно-модулированной записью: а  упрощенная структура;

б  характеристика преобразования
.

Основные достоинства ИМГ:

  • многоканальность (до 40 каналов одновременной записи);

  • возможность работы в полевых условиях;

  • сравнительно широкий диапазон частот;

  • длительные интервалы регистрации;

  • большие объемы регистрируемой информации;

  • длительное энергонезависимое хранение записанной инфор­мации.

Основные недостатки ИМГ:

  • сравнительно невысокая надежность вследствие наличия ме­ханических узлов;

  • невозможность непосредственного наблюдения зарегистриро­ванных сигналов (отсутствие видимого изображения сигналов);

  • сравнительно невысокая точность.

Наряду с чисто измерительными задачами ИМГ используются также в качестве так называемых черных ящиков на борту самолетов и кораблей. При этом они регистрируют разнооб­разную информацию о состоянии основных агрегатов, все коман­ды и переговоры экипажа с основной базой.

Существует разновидность магнитных регистраторов, исполь­зующих промежуточное аналого-цифровое преобразование ис­следуемого сигнала и последующую цифровую магнитную запись. В этих аппаратах метрология определяется не только аналоговыми преобразованиями сигнала, но и характеристиками АЦП, поэто­му они ближе к цифровым измерительным регистраторам.

^ 4.5. Аналоговые запоминающие осциллографы

По признакам введенного ранее понятия «регистрация» ана­логовые запоминающие осциллографы (АЗО) относятся к реги­стрирующим средствам измерения, хотя это и необщепризнано, видимо, потому, что длительность хранения информации недо­статочно велика. Два простых физических принципа лежат в осно­ве действия АЗО: явление вторичной эмиссии электронов из диэлектрика «мишени» и достаточно длительное хранение заряда в диэлектрике.

По устройству запоминающая электронно-лучевая трубка (ЗЭЛТ)  Storage X-Ray Tube  отличается от обычной ЭЛТ на­личием (помимо основной) дополнительных электронно-лучевых пушек (формирующих рассеянные потоки медленных электронов), а также дополнительных электродов  «мишени» и коллектора. «Мишень» размещена между внутренней поверхностью (люминофором) экрана и коллектором и представляет собой мелкострук­турную (ячейки размером 0,1...0,2 мм) металлическую сетку, по­крытую слоем диэлектрика. Потенциал мишени отрицательный и составляет несколько сотен вольт. Коллектор также представляет собой металлическую сетку (шаг 1...2 мм), которая имеет неболь­шой (сотни вольт) положительный потенциал.

Работу ЗЭЛТ удобно представить двумя фазами: первая  фаза запоминания (собственно регистрация), вторая  фаза считыва­ния. В первой фазе, напоминающей действие обычной ЭЛТ, сфо­кусированный поток электронов (основной поток) с большой скоростью попадает на мишень и выбивает в местах удара вто­ричные электроны, которые собираются коллектором. Число вы­битых электронов значительно больше, чем упавших (коэффици­ент вторичной эмиссии гораздо больше единицы), поэтому на мишени в точках попадания остается положительный заряд. След основного потока электронов образует траекторию положитель­ных зарядов на поверхности мишени, несущую информацию о исследуемом сигнале.

Во второй фазе мишень облучается рассеянными потоками мед­ленных электронов, для которых траектория на мишени является прозрачной, а вся мишень (отрицательно заряженная) непро­зрачна. Таким образом, на люминофоре экрана возникает (и под­держивается в течение времени подсветки) копия траектории, т.е. образ исследуемого сигнала. Длительность времени хранения заряда  от нескольких часов до нескольких недель, но время воспроизведения (считывания) меньше: единицы минут  еди­ницы часов. Это объясняется ускорением рассасывания (диффу­зии) хранимого мишенью заряда при подсветке в процессе счи­тывания.

Основные характеристики АЗО практически не отличаются от соответствующих характеристик обычных аналоговых (электрон­но-лучевых) осциллографов. При сравнительно высоких динами­ческих характеристиках АЗО (до сотен мегагерц  единиц гига­герц) точность результатов измерения амплитудных и временных параметров невысока (единицы процентов при квалифицирован­ном операторе). Стоимость АЗО значительно выше стоимости обыч­ного ЭЛО за счет специализированной трубки, надежность ниже, срок службы меньше, масса и габаритные размеры больше.
4.6. Сравнение возможностей аналоговых регистраторов

Сравнение соотношения «быстродействие–точность», т.е. основных характеристик регистраторов, показано на рис. 65.

Общий характер диаграммы хорошо отвечает известному пра­вилу измерительной техники «выиграешь в точности  потеряешь в скорости» (аналогичному «золотому правилу механики») и позволяет предварительно выбрать инструмент для эксперимента по регистрации



Рис. 65.

.

Отметим одно важное обстоятельство. Возможности развития аналоговых регистраторов фактически исчерпаны; технологическими и конструктивными способами совершенствования характе­ристик «выбраны», по сути, все резервы. Развитие этой (аналого­вой) группы идет в основном по пути некоторого улучшения эксплуатационных характеристик. Положенные в основу принципы действия при нынешнем уровне развития технологии, точной механики реализованы практически полностью. В этом смысле аналоговые методы и средства нельзя считать перспективным направлением развития регистрирующей техники. Однако пока существует экономически оправданная ниша, в которой они находят целесообразное применение.
1   ...   5   6   7   8   9   10   11   12   ...   16

Похожие:

Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Гродненский государственный...
С. Е. Витун, заведующий кафедрой финансов и кредита уо «Гродненский государственный университет имени Янки Купалы», кандидат экономических...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconРеспублики Беларусь Учреждение образования «Белорусский государственный...
Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «Гродненский государственный медицинский университет» Кафедра биохимии
Рекомендовано Центральным научно-методическим советом уо “Гргму” (протокол № от 10. 06. 20010 г.)
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconМинистерство образования и науки РФ федеральное государственное бюджетное...
«Московский государственный университет технологий и управления имени К. Г. Разумовского»
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКонкурс «Лучший инновационный проект студентов и аспирантов» проводится...
«Чувашский государственный университет имени И. Н. Ульянова» в рамках всероссийского фестиваля науки, организуемого Министерством...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный медицинский университет»...
Т. М. Шаршакова, Н. П. Петрова, В. М. Дорофеев. ― Гомель: Учреждение образования «Гомельский государственный медицинский университет»,...
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconУчреждение образования «гомельский государственный технический университет...
Список использованных источников
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconГосударственное образвательное учреждение высшего профессионального образования
Самарский государственный аэрокосмический университет имени академика С. П. Королева”
Учреждение образования «гродненский государственный университет имени янки купалы» С. В. Васильев, В. И. Недолугов iconКафедра акушерства и гинекологии
Государственное образовательное учреждение высшего профессионального образования «тамбовский государственный университет имени г....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница