Основные понятия и определения


НазваниеОсновные понятия и определения
страница5/10
Дата публикации05.04.2013
Размер1.09 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   2   3   4   5   6   7   8   9   10

^ Амперметры и вольтметры. В магнитоэлектрических ампер­метрах измерительный механизм включается в цепь измеряемого тока либо непосредственно, либо при помощи шунта. Непосред­ственное включение применяется при измерении малых токов (до 30 мА), допустимых для токоподводов (пружинок, растяжек) и обмотки подвижной катушки механизма, т. е. непосредственное включение возможно для микро- и миллиамперметров. При боль­ших токах применяют шунты.

Изменение окружающей температуры влияет на магнито­электрический прибор следующим образом.

1. При повышении температуры удельный противодейству­ющий момент пружинок (или растяжек) уменьшается на 0,2— 0,4 % на каждые 10 К; магнитный поток постоянного магнита, а следовательно и индукция в зазоре, уменьшаются приблизи­тельно на 0,2 % на каждые 10 К. Таким образом, эти явления оказывают противоположное влияние на показания прибора и по­этому в приборах малой и средней точности температурное влия­ние пренебрежимо мало.

2. Изменяется электрическое сопротивление обмотки катушки и токоподводов. Это влияние — основной источник температур­ной погрешности магнитоэлектрических приборов.

Амперметры без шунта не имеют температурной погрешно­сти. В амперметрах с шунтом температурная погрешность может оказаться значительной вследствие перераспределения токов между шунтом и подвижной катушкой. Для ее уменьшения при­меняют специальные цепи температурной компенсации, одна из которых показана на рис.. В этом случае температурная погрешность снижается за счет включения последовательно с подвижной катушкой резистора из манганина.

В многопредельных амперметрах для изменения пределов измерения применяют многопредельные шунты. Поэтому мно­гопредельные амперметры снабжают переключателями диапазо­нов измерений или несколькими входными зажимами.

В магнитоэлектрических вольтметрах для получения нужного диапазона измерений последовательно с измерительным меха­низмом включают добавочный резистор стабильного сопротивле­ния, например выполненный из манганина.

Влияние температуры на магнитоэлектрический вольтметр зависит от соотношения сопротивления катушки и резистора, а также от температурных коэффициентов электрического сопро­тивления их.

В многопредельных вольтметрах используют несколько доба­вочных резисторов. Поэтому многопредельные вольтметры снаб­жают переключателем диапазонов или несколькими входными зажимами. Пропорциональная зависимость угла отклонения подвижной части от тока в катушке приводит к равномерной шкале у магнитоэлектрических амперметров и вольтметров.

Магнитоэлектрические амперметры и вольтметры выпускают переносными и щитовыми. Переносные приборы в большинстве случаев делают высокоточными (классов 0,1 — 0,5), многопре­дельными (до нескольких десятков пределов) и часто комбиниро­ванными (вольтамперметрами). Щитовые приборы выпускают однопредельными классов точности 0,5 — 5.

Омметры. На основе магнитоэлектрического измерительного механизма выпускают магнитоэлектрические омметры: с после­довательным включением механизма и объекта исследования, с параллельным включением и с логометрическим измерительным механизмом.

При последовательном включении измерительного механизма и объекта с измеряемым сопротивлением ^ Rx угол отклонения подвижной части измерительного механизма определяется значением Rx. шкалы омметров неравномерны. При последовательном включе­нии максимальному углу отклонения подвижной части соответствует нулевое значение измеряемого сопротивления. Омметры с последовательным включением более пригодны для измерения больших сопротивлений, а с параллельным — малых. Обычно эти омметры выполняют в виде переносных приборов классов точно­сти 1,5 и 2,5.

При питании омметра сухими батареями, у которых напряже­ние изменяется со временем, путем изменения индукции в зазоре с помощью магнитного шунта поддерживают S/t/= const.

Находят применение омметры с логометрическим измеритель­ным механизмом, где угол отклонения определяется значением Rx и не зависит от напряжения питания.

Для измерения больших сопротивлений и, прежде всего, для измерения сопротивления изоляции различных электротехниче­ских установок, используют омметры, называемые мегомметрами. В этих приборах питание цепи осуществляется от встроенного генератора с ручным приводом.
Гальванометры. Гальванометром называют прибор с негра­дуированной шкалой, имеющий высокую чувствительность к току или напряжению. Гальванометры широко применяют в качестве нуль-индикаторов, а также для измерения малых токов, напряже­ний и количества электричества. В последнем случае гальвано­метр называют баллистическим.

Высокая чувствительность гальванометров достигается, главным образом, путем уменьшения противодействующего мо­мента и использования светового указателя с большой длиной светового луча.

Чувствительность гальванометров выражают отношением перемещения указателя к току (напряжению), вызвавшему это перемещение.

Гальванометры бывают переносные и стационарные. Пере­носные гальванометры имеют встроенную шкалу. У стационар­ных гальванометров шкалу устанавливают на некотором расстоя­нии от прибора. Чувствительность стационарного гальваномет­ра зависит от расстояния между зеркальцем гальванометра и шкалой. Принято выражать чувствительность и постоянную стационарного гальванометра для расстояния, равного 1 м, на­пример, C=1,2•10-6 Ам/мм.

Важной характеристикой гальванометра является постоянст­во нулевого положения указателя. Постоянство характеризуется невозвращением указателя к нулевой отметке при плавном воз­вращении указателя от крайней отметки шкалы. По этой характе­ристике гальванометрам присваивают разряд постоянства. Ус­ловное обозначение разряда постоянства гальванометра состоит из числа, заключенного в ромб.

Обычно гальванометр имеет корректор для установки нулево­го положения указателя.

Гальванометры с подвижной частью на подвесе снабжают арретиром для фиксации подвижной части, например, при пере­носке прибора.

Ввиду высокой чувствительности гальванометров к различ­ным воздействиям необходимо защищать их от помех. Так, от механических сотрясений гальванометры защищают, устанавли­вая их на капитальную стену. Для защиты от токов утечки галь­ванометры снабжают экраном, который заземляют. Стационарные гальванометры обычно снабжают магнитным шунтом. Регулируя положение шунта, можно менять чувстви­тельность гальванометра и внешнее критическое сопротивление.

Внешним критическим сопротивлением гальванометра назы­вают наибольшее сопротивление внешней цепи, на которое замк­нута катушка гальванометра и при котором подвижная часть гальванометра во время переходного процесса движется аперио­дически, но наиболее ускоренно.

Движение подвижной части при носит апериодический характер (кривая 3 на рис.). Подвижная часть гальвано­метра приближается к установившемуся отклонению, не перехо­дя его.

В этом случае подвижная часть двигается апериодически, но наиболее ускоренно. Этот граничный случай апериодического движения принято называть движением при критическом успоко­ении (кривая 2 на рис.).

Коэффициент успокоения, отвечающий критическому успоко­ению гальванометра, называют коэффициентом критического успокоения Ркр.

Наиболее благоприятный режим движения подвижной части гальванометра при Р«Ркр (р«1). Этот режим получается при равенстве внешнего критического сопротивления и сопротивле­ния цепи, на которую замкнут гальванометр. Регулируя индукцию В, можно регулировать Рвш. кр, делая его равным сопротивлению внешней цепи. Изменение индукции, а следовательно и изменение внешне­го критического сопротивления, производят с помощью магнитно­го шунта.

Так как установившееся отклонение подвижной части теоре­тически достигается через бесконечно большой промежуток вре­мени, то на практике принято считать отклонение установившим­ся, когда подвижная часть достигает этого отклонения с некото­рой погрешностью. Обычно эту погрешность принимают равной ±(0,1—1) % от максимального отклонения.

^ Баллистические гальванометры. Гальванометры, предназна­ченные для измерения количества электричества импульса тока и отличающиеся увеличенным моментом инерции, называют бал­листическими.

Допущение о неподвижности подвижной час­ти до окончания действия импульса выполняется тем точнее, чем больше момент инерции подвижной части гальванометра и, следовательно, больше период собственных колебаний То. Для бал­листических гальванометров То составляет десятки секунд (для обычных гальванометров — единицы секунд).

Кулонметры. Кулонметры — приборы для измерения количе­ства электричества в импульсе тока. В этих приборах использу­ется магнитоэлектрический измерительный механизм без проти­водействующего момента. Подвод тока к подвижной катушке осуществляется посредством безмоментных токоподводов. Об­мотка катушки наматывается на алюминиевый каркас, в кото­ром при движении катушки появляется ток, создающий момент успокоения.

Для измерения количества электричества, протекающего в течение длительного времени, используют счетчики количества электричества (счетчики ампер-часов). Магнитоэлектрические счетчики ампер-часов представляют собой электрические двига­тели специальной конструкции со счетным механизмом, у которых частота вращения подвижной части пропорциональна току, а число оборотов за определенный интервал времени соответству­ет количеству электричества за этот интервал.

Класс точности 0,5.

^ ЭЛЕКТРОДИНАМИЧЕСКИЕ И ФЕРРОДИНАМИЧЕСКИЕ ПРИБОРЫ

Общие сведения. Электродинамические (ферродинамические) приборы состоят из электродинамического (ферродинамического) измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных и переменных токов и напряжений, мощности в цепях постоянного и переменного тока, угла фазового сдвига между переменными токами и напряжениями. .Электродинамические приборы являются наиболее точными электромеханическими приборами для цепей переменного тока.

^ Измерительный механизм. Вращающий момент в электроди­намических и ферродинамических измерительных механизмах возникает в результате взаимодействия магнитных полей непо­движных и подвижной катушек с токами.

Электродинамический измерительный механизм (рис. ) имеет две последовательно соединенные неподвижные катушки1, разделенные воздушным зазором, и подвижную катушку 2. Ток к подвижной катушке подводится через пружинки, создающие противодействующий момент.

Успокоение создается воздушным или магнитоиндукционным успокоителем.

При протекании токов в обмотках катушек измерительного механизма возникает момент, поворачивающий подвижную часть.

Вращающий момент имеет постоянную и гармони­ческую составляющие. Отклонение подвижной части обычно при­меняемого электродинамического измерительного механизма при работе его в цепи переменного тока промышленной и более высо­кой частоты определяется постоянной составляющей момента.

В электродинамических логометрических механизмах по­движная часть состоит из двух жестко скрепленных между собой под определенным углом подвижных катушек, находящихся в по­ле неподвижных катушек. Токи к подвижным катушкам подводят с помощью безмоментных токоподводов. Анализ работы механиз­ма показывает, что угол отклонения подвижной части определя­ется отношением токов через подвижные катушки и зависит от фазовых сдвигов этих токов относительно тока через неподвиж­ную катушку.

На работу электродинамических измерительных механизмов сильное влияние оказывают внешние магнитные поля, так как собственное поле механизма невелико. Для защиты от внешних магнитных полей применяют магнитное экранирование. Иногда применяют так называемые астатические измерительные меха­низмы, на которые внешние поля действуют значительно слабее.

Особенности электродинамических измерительных механиз­мов придают электродинамическим приборам определенные по­ложительные свойства. Электродинамические измерительные ме­ханизмы работают как на постоянном, так и на переменном токе (примерно до 10 кГц.) с высокой точностью и обладают высокой стабильностью своих свойств.

Однако электродинамические измерительные механизмы име­ют низкую чувствительность по сравнению с магнитоэлектриче­скими механизмами. Поэтому приборы с электродинамическими механизмами обладают большим собственным потреблением мощности. Электродинамические измерительные механизмы име­ют малую перегрузочную способность по току, относительно сложны и дороги.

Ферродинамический измерительный механизм отличается от электродинамического механизма тем, что его неподвижные ка­тушки имеют магнитопровод из магнитомягкого листового мате­риала, позволяющий существенно увеличивать магнитный поток, а следовательно, и вращающий момент. Однако использование ферромагнитного сердечника приводит к появлению погрешно­стей, вызванных его влиянием, например погрешностей от нелинеиности кривой намагничивания, от гистерезиса при работе на постоянном токе и т. д. Ферродинамические измерительные меха­низмы мало подвержены влиянию внешних магнитных полей, так как имеют достаточно сильные собственные поля.

^ Амперметры и вольтметры. В электродинамических и ферро-динамических амперметрах для токов до 0,5 А неподвижные и подвижная катушки измерительного механизма соединяют по­следовательно. В этом случае токи в катушках равны.Для получения линейной зависимости, а следова­тельно равномерной шкалы, у электродинамических амперметров так располагают неподвижные катушки, чтобы зависимость приближалась к линейной. Практически у электродинамических амперметров шкала равномерна в пределах 25—100 % ее длины.

При последовательном включении катушек температурная и частотная (до 2000 Гц) погрешности электродинамических амперметров незначительны.

В амперметрах на токи свыше 0,5 А подвижную и неподвиж­ные катушки включают параллельно. В этом случае осуществля­ют компенсацию температурной и частотной погрешностей, воз­никающих из-за перераспределения токов в катушках при изме­нении температуры и частоты. Компенсацию температурной погрешности осуществляют подбором сопротивлений добавочных резисторов из манганина и меди, включаемых в каждую из па­раллельных ветвей так, чтобы температурные коэффициенты со­противления этих ветвей были одинаковыми. Компенсацию час­тотной погрешности выполняют включением добавочных катушек индуктивности или конденсаторов в соответствующие ветви схе­мы так, чтобы были равными постоянные времени этих ветвей.

Электродинамические амперметры чаще всего выпускают на два диапазона измерений. Изменение пределов при этом произво­дится путем включения неподвижных катушек последовательно или параллельно. Для расширения пределов измерения использу­ют измерительные трансформаторы тока.

Электродинамический вольтметр состоит из электродинами­ческого измерительного механизма и добавочного резистора ста­бильного сопротивления, причем все катушки механизма и доба­вочный резистор включены последовательно.

В многопредельных вольтметрах последовательно с измери­тельным механизмом включается секционированный добавочный резистор. Поэтому многопредельные вольтметры снабжают пе­реключателем пределов или несколькими входными зажимами. Для увеличения верхнего предела измерений вольтметра приме­няют измерительные трансформаторы напряжения.

В электродинамических вольтметрах при изменении темпера­туры возникает температурная погрешность от изменения сопро­тивления цепи вольтметра. В вольтметрах с малым верхним пре­делом измерений температурная погрешность может достичь не­допустимой величины. Поэтому в таких вольтметрах уменьшают сопротивление катушек, уменьшая число витков, что приводит к увеличению тока, потребляемого прибором. Частотная погреш­ность, вызванная изменением Z прибора, компенсируется путем шунтирования части добавочного резистора конденсатором.

Основная область применения электродинамических ампер­метров и вольтметров — точные измерения в цепях переменного тока, чаще всего в диапазоне частот от 45—50 Гц до тысяч герц. Их применяют также в качестве образцовых при поверке и гра­дуировке других приборов.

Промышленность выпускает электродинамические миллиам­перметры и амперметры с верхними пределами от 1 мА до 10 А на частоты до 10 кГц, многопредельные вольтметры с верхними пределами от 1,5 до 600 В на частоты до 5 кГц. Классы точности амперметров и вольтметров 0,1; 0,2; 0,5.

Область применения ферродинамических амперметров и вольтметров — измерения переменных токов и напряжений в узком диапазоне частот при тяжелых условиях эксплуатации.
1   2   3   4   5   6   7   8   9   10

Похожие:

Основные понятия и определения icon1. основные понятия в области метрологии
Основные термины и определения в области метрологии регламентируются рекомендациями по межгосударственной стандартизации рмг 29 –...
Основные понятия и определения icon1 Предмет теории вероятностей
Случайные события, виды случайных событий, основные понятия и определения
Основные понятия и определения iconЭкзаменационные вопросы по курсу “Теория вероятностей и математическая статистика”
Предмет теории вероятностей, элементарные исходы, случайные события, виды случайных событий, основные понятия и определения, вероятность...
Основные понятия и определения iconВопросы к экзамену по курсу “Информационные системы маркетинга” Основные...
Локальная сеть. Основные понятия локальных сетей. Отличительные особенности локальных сетей
Основные понятия и определения iconВопросы к экзамену по Электрической части гэс для студентов дфо, 4 курс, 7 семестр
Электрическое оборудование распределительных устройств: основные понятия и определения
Основные понятия и определения iconОсновные понятия и определения
Ос – организованный набор программ и данных, обеспечивающий управление всеми ресурсами вычислительной системы (ВС) и предоставляющий...
Основные понятия и определения iconОсновные понятия и определения
Ос – организованный набор программ и данных, обеспечивающий управление всеми ресурсами вычислительной системы (ВС) и предоставляющий...
Основные понятия и определения iconОсновные понятия и определения
Ос – организованный набор программ и данных, обеспечивающий управление всеми ресурсами вычислительной системы (ВС) и предоставляющий...
Основные понятия и определения iconИзмерение давления краткие теоретические сведения
Основные понятия и определения. Давлением p называется отношение нормальной составляющей силы Fn к единице площади S, на которую...
Основные понятия и определения iconОсновные понятия и определения
Туристская деятельность туроператорская и турагентская деятельность, а также иная деятельность по организации путешествий
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница