Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение


НазваниеЛи Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение
страница7/24
Дата публикации09.03.2013
Размер5.56 Mb.
ТипДокументы
userdocs.ru > Физика > Документы
1   2   3   4   5   6   7   8   9   10   ...   24

^ 6. Квантовая гравитация: развилка на дороге
В то время, как большинство физиков игнорировали гравитацию, несколько отважных личностей в 1930х начали думать о примирении ее с быстро развивающейся квантовой механикой. В течение более полстолетия в области квантовой гравитации работало не более горстки первопроходцев и несколько человек уделяли ей некоторое внимание. Но проблема квантовой гравитации не могла быть проигнорирована навсегда. Из пяти вопросов, которые я описывал в первой главе, это первый, который не мог быть отпущен нерешенным. В отличие от остальных, поиски решения этого вопроса нужно рассматривать не менее, чем поиски языка, на котором записаны законы природы. Пытаться решить любую из оставшихся проблем, не решив эту, все равно, что пытаться обсуждать условия контракта в стране, где нет закона.

Поиск квантовой гравитации является правильным поиском. Пионеры этого дела были разведчиками в новом ландшафте идей и возможных миров. Теперь этим занимаются многие из нас, и некоторая часть ландшафта хорошо картографирована. Некоторые тропинки были исследованы, но привели только к тупикам. И хотя некоторые еще освещаются, а на нескольких даже стало тесно, мы до сих пор не можем сказать, что проблема решена.

Большая часть этой книги была написана в 2005, в столетнюю годовщину первого великого достижения Эйнштейна. Год был заполнен конференциями и событиями, отмечающими юбилей. Это был столь же хороший повод привлечения внимания к физике, как и любой другой, но это было не без иронии. Некоторые из открытий Эйнштейна были столь радикальны, что даже сегодня они недостаточно оценены большинством физиков-теоретиков, но ведущим среди них является достигнутое им понимание пространства и времени в ОТО.

Главный урок ОТО в том, что геометрия пространства не фиксирована. Она динамически эволюционирует, изменяясь во времени, когда материя движется туда и сюда. Имеются даже волны – гравитационные волны, – которые путешествуют через геометрию пространства. До Эйнштейна законы евклидовой геометрии, которые мы изучали в школе, рассматривались как вечные законы: всегда было и всегда будет верным, что углы треугольника складываются к 180 градусам. Но в ОТО углы треугольника могут складываться к чему угодно, поскольку геометрия пространства может искривляться.

Это не означает, что имеется некоторая другая фиксированная геометрия, которая характеризует пространство, – что пространство подобно сфере или седловой поверхности вместо плоскости. Суть в том, что геометрия может быть совершенно любой, поскольку она изменяется во времени, реагируя на материю и силы. Вместо закона, который устанавливает, какова геометрия, имеется закон, который устанавливает, как геометрия изменяется, – точно так же, как ньютоновские законы говорят нам не о том, где находятся объекты, а о том, как они двигаются, определяя, как силы влияют на их движение.

До Эйнштейна геометрия мыслилась как часть законов. Эйнштейн обнаружил, что геометрия пространства эволюционирует во времени в соответствии с другими, более глубокими законами.

Важно полностью осознать этот момент. ^ Геометрия пространства не является частью законов природы. Следовательно, в этих законах нет ничего, что устанавливает, какой является геометрия пространства. Таким образом, прежде, чем решать уравнения ОТО Эйнштейна, вы не имеете никакой идеи о том, какова геометрия пространства. Вы найдете ее только после того, как решите эти уравнения.

Это означает, что законы природы должны быть выражены в форме, которая не предполагает, что пространство имеет любую фиксированную геометрию. В этом суть эйнштейновского урока. Мы оформили это в принцип, который описали ранее: независимость от фона. Принцип устанавливает, что законы природы могут быть полностью определены без любого предварительного предположения о геометрии пространства. В старой картине, где геометрия была фиксирована, она должна была мыслиться как часть фона, неизменной сцены, на которой разворачивается спектакль природы. Сказать, что законы физики не зависят от фона, означает, что геометрия пространства не фиксирована, а эволюционирует. Пространство и время появляются из законов, вместо того, чтобы обеспечивать арену, на которой происходят вещи.

Другой аспект независимости от фона состоит в том, что нет предпочтительного времени. ОТО описывает историю мира более фундаментально, в терминах событий и соотношений между ними. Главные соотношения должны действовать вместе с причинностью; одно событие может быть в цепочке причин, приводя к другому событию. С этой точки зрения пространство является вторичной концепцией. Концепция пространства, фактически, полностью зависит от понятия времени. Задавая часы, мы можем думать обо всех событиях, которые одновременны с отбиванием часами полдня. Они и составляют пространство.

Важный аспект ОТО в том, что там нет предпочтительного способа отсчета времени. Любой сорт часов подойдет, пока они показывают причины, предшествующие следствиям. Но, поскольку определение пространства зависит от времени, имеется так же много различных определений пространства, как и времени. Только что выше я говорил о геометрии пространства, эволюционирующей во времени. Это сохраняется не для отдельного универсального понятия времени, а для любого возможного понятия времени. То, как все это работает, является частью замысловатой красоты эйнштейновской ОТО. Для наших целей достаточно будет помнить, что уравнения этой теории говорят нам, как геометрия пространства эволюционирует во времени не только для одного, но для любого возможного определения времени.

На самом деле, независимость от фона означает даже больше, чем это. Имеются другие аспекты природы, которые фиксируются в обычных выражениях законов физики. Но, возможно, их не должно быть. Например, факт, что имеется только три измерения пространства, является частью фона. Может ли существовать более глубокая теория, в которой мы не делаем заранее никаких предположений о числе пространственных измерений? В такой теории три измерения могут возникать как решение некоторого динамического закона. Вероятно, в такой теории число пространственных измерений может даже меняться во времени. Если бы мы смогли придумать такую теорию, она смогла бы объяснить нам, почему наша вселенная имеет три измерения. Это бы составило прогресс: объяснить в конце концов нечто, что ранее просто предполагалось.

Так что идея независимости от фона в ее наиболее широком выражении является частью мудрости действия физики: Делать более лучшие теории, в которых вещи, которые сегодня предполагаются, объясняются путем позволения таким вещам эволюционировать, подчиняясь некоторому новому закону. Эйнштейновская ОТО сделала для геометрии пространства в точности это.

Ключевой вопрос квантовой теории гравитации тогда следующий: можем ли мы распространить на квантовую теорию принцип, что пространство не имеет фиксированной геометрии? То есть, можем ли мы сделать квантовую теорию не зависящей от фона, по меньшей мере, по отношению к геометрии пространства? Если мы сможем это сделать, мы автоматически свяжем гравитацию и квантовую теорию, поскольку гравитация уже понимается как аспект динамической геометрии пространства-времени.

Тогда имеется два подхода к соединению гравитации и квантовой теории: тот, который достигает фоновой независимости, и тот, который нет. Поле квантовой гравитации разделилось вдоль этих линий давным давно, в 1930х, хотя большинство изучаемых сегодня подходов является фоново-независимыми. Единственное исключение составляет подход, который исследуют большинство сегодняшних физиков, – теория струн.

Как случилось, что высочайшее достижение самого знаменитого ученого двадцатого столетия было фактически проигнорировано большинством тех, кто шумно следовал по его стопам, есть одна из наиболее странных историй в истории науки. Эта история должна быть тут обсуждена, поскольку она является центральной для вопросов, которые я поднял во Введении. В самом деле, вы можете удивиться: если ОТО Эйнштейна так хорошо принята, почему кто-то пытается развивать новую теорию, которая не берет на борт ее центральный принцип? Ответ является целой историей, и, подобно многим историям в этой книге, она начинается с Эйнштейна.

Уже в 1916 Эйнштейн осознал, что имеются гравитационные волны и что они переносят энергию. Он тотчас же заметил, что согласование с атомной физикой потребует, чтобы энергия, переносимая гравитационными волнами, была описана в терминах квантовой теории. В самой первой статье, когда-либо написанной по гравитационным волнам, Эйнштейн сказал, что "кажется, что квантовая теория должна будет модифицировать не только теорию электромагнетизма Максвелла, но и новую теорию гравитации."[28]

Тем не менее, несмотря на то, что Эйнштейн был первым, кто поставил проблему квантовой гравитации, его глубокое прозрение было проигнорировано большинством из тех, кто с тех пор над ней работал. Как такое могло быть?

Тут есть причина, и она в том, что никто в то время не знал, как подойти к непосредственному применению развивающейся тогда квантовой теории к ОТО. Вместо этого, прогресс оказался возможным по непрямому маршруту. Те, кто хотел применить квантовую механику к ОТО, встали перед двумя проблемами. Исключая независимость от фона, они споткнулись о факт, что ОТО является полевой теорией. Имеется бесконечное число возможностей для геометрии пространства, а поэтому и бесконечное число переменных.

Как я описывал в главе 4, как только квантовая механика была полностью сформулирована, физики начали применять ее к полевым теориям, таким как теория электромагнитного поля. Они и формулировались в фиксированном пространственно-временном фоне, так что проблема независимости от фона не возникала. Но они дали физикам опыт оперирования с проблемой бесконечного количества переменных.

Первым большим успехом квантовой теории поля была квантовая электродинамика (КЭД), объединение максвелловской теории электромагнетизма с квантовой теорией. Примечательно, что в их первой статье по КЭД в 1929 Вернер Гейзенберг и Вольфганг Паули, два основателя квантовой механики, уже продумывали расширение своей работы на квантовую гравитацию. Они, очевидно, чувствовали, что это будет не слишком сложно, поскольку они написали, что "квантование гравитационного поля, которое кажется необходимым по физическим причинам, может быть проведено без каких-либо новых сложностей посредством формализма, полностью аналогичного использованному здесь."[29]

Более чем семьдесят пять лет спустя, мы можем только удивиться степени, до которой эти два выдающихся человека недооценили сложность проблемы. Но о чем они могли бы думать? Ну, я знаю, поскольку с той поры многие люди имели те же мысли, и тупик, в который они приводят, был тщательно исследован.

Гейзенберг и Паули думали, что когда гравитационные волны очень слабые, их можно рассматривать как мелкую рябь, возмущающую фиксированную геометрию. Если вы бросите камень в пруд тихим утром, это вызовет мельчайшую рябь, которая едва нарушит плоскую поверхность воды, так что легко подумать, что рябь движется по фиксированому фону, заданному этой поверхностью. Но когда водяные волны сильные и бурные, как вблизи пляжа в штормовой день, не имеет смысла рассматривать их как возмущение чего-то фиксированного.

ОТО предсказывает, что во вселенной имеются регионы, где геометрия пространства-времени эволюционирует бурно, подобно волнам, обрушивающимся на пляж. Но Гейзенберг и Паули думали, что будет проще сначала изучить случай, в котором гравитационные волны экстремально слабые и могут рассматриваться как мелкая рябь на фиксированном фоне. Это позволило им применить те же самые методы, которые они разработали, чтобы изучить квантовые электромагнитные поля, двигающиеся на фиксированном фоне пространства-времени. И, фактически, было нетрудно применить квантовую механику к свободно двигающимся очень слабым гравитационным волнам. Результат был такой, что каждая гравитационная волна может быть рассмотрена квантовомеханически как частица, именуемая гравитоном, – аналог фотона, который является квантом электромагнитного поля. Но на следующем этапе они столкнулись с большой проблемой, поскольку гравитационные волны взаимодействуют друг с другом. Они взаимодействуют со всем, что имеет энергию, и они сами переносят энергию. Эта проблема не возникает с электромагнитными волнами, поскольку, хотя фотоны взаимодействуют с электрическими и магнитными зарядами, сами они не заряжены, так что они проходят прямо друг сквозь друга. Эту важную разницу между двумя видами волн Гейзенберг и Паули упустили.

Последовательное описание самодействия гравитонов оказалось крепким орешком. Теперь мы понимаем, что неудача в решении этой проблемы является следствием того, что не принимался всерьез эйнштейновский принцип независимости от фона. Раз уж гравитационные волны взаимодействуют друг с другом, они не могут больше рассматриваться как двигающиеся на фиксированном фоне. Они изменяют фон, когда путешествуют по нему.

Несколько людей поняли это уже в 1930е. Вероятно, первой диссертацией на степень доктора философии из когда-либо написанных по проблеме квантовой гравитации была диссертация русского физика Матвея Петровича Бронштейна в 1935. Те, кто вспоминал его, думали о нем как об одном из двух самых выдающихся советских физиков его поколения. Он писал в 1936 в статье, что «устранение ... логических противоречий требует ... отказа от обычных представлений о пространстве и времени и замены их какими-то гораздо более глубокими и лишенными наглядности понятиями.» Затем он сослался на немецкую поговорку: "Пусть сомневающийся платит талер."[30] Взгляды Бронштейна поддержал молодой выдающийся французский физик Жак Соломон.

К настоящему времени почти любой, кто серьезно думал о квантовой гравитации, согласен с Бронштейном, но на это потребовалось семьдесят лет. Одна из причин в том, что даже такие блестящие умы как Бронштейн и Соломон не смогли уберечься от безумия своего времени. Годом позже после написания Бронштейном статьи, которую я только что процитировал, он был арестован НКВД, а затем казнен расстрельной командой 18 февраля 1938. Соломон стал членом французского Сопротивления и был убит немцами 23 мая 1942. Их идеи были потеряны для истории. Я работал над проблемой квантовой гравитации всю мою жизнь, но я изучил эти идеи только тогда, когда заканчивал эту книгу.

Работа Бронштейна была забыта, и большинство физиков вернулись к изучению квантовой теории поля. Как я описывал в главе 4, потребовалось время до конца 1940х, чтобы КЭД была разработана. Этот успех затем побудил нескольких людей еще раз поднять проблему объединения гравитации с квантовой теорией. Сразу же возникли два противоположных лагеря. Один из них следовал Бронштейну, принимая всерьез фоновую независимость ОТО. Другой игнорировал независимость от фона и следовал маршруту Гейзенберга и Паули в их попытках применить квантовую теорию к гравитационным волнам, рассматривая их движущимися на фиксированном фоне.

Поскольку независимость от фона является одним из принципов ОТО, кажется осмысленным включить ее в попытки объединить эту теорию с квантовой теорией. Но, как оказалось, вещи не так просты. Некоторые люди – подобные британскому физику П.А.М. Дираку и немцу Петеру Бергманну, который начинал свою карьеру в качестве ассистента Эйнштейна в Принстоне, – попытались сконструировать фоново-независимую теорию квантовой гравитации. Они нашли ее трудной задачей. Такие попытки не приносили плодов вплоть до середины 1980х, но с тех пор достигнут большой прогресс в понимании квантовой гравитации с фоново-независимой точки зрения. Большинство теоретиков по квантовой гравитации сегодня работают в одном из нескольких независимых от фона подходов. Мы вернемся к ним в книге позже, ибо они составляют наиболее важные альтернативы теории струн.

Но ни один из этих многообещающих знаков не был очевиден, когда люди стартовали вдоль дороги квантовой гравитации в 1950х. Ограниченный прогресс, достигнутый с использованием независимых от фона методов, выглядел ничтожным по сравнению с великими шагами, которые были сделаны в КЭД. Так что до конца 1980х большинство людей выбрали другой маршрут, который заключался в попытках применить методы КЭД к ОТО. Это, наверное, можно было понять. После формулирования КЭД люди узнали много о фоново-зависимых квантовых теориях, но ни один не знал хоть что-нибудь о том, на что может быть похожа фоново-независимая квантовая теория, если она вообще существует.

Поскольку это был маршрут, который привел к теории струн, стоит проследовать вдоль него. Поскольку работы из 1930х были забыты, их стоило открыть заново. Теория гравитонов была выработана повторно в диссертации на доктора философии Брюсом ДеВиттом, который был студентом Джулиана Швингера в Гарварде в конце 1940х. Благодаря этому и множеству его последующих открытий мы относимся к ДеВитту, как к одному из основателей теории квантовой гравитации.

Но, как отмечалось, теории гравитона было недостаточно. Теория гравитона прекрасна, пока гравитоны просто двигаются через пространство, но если это все, что они делают, нет гравитации и, определенно, нет динамической и искривленной геометрии. Так что это была не унификация ОТО или гравитации с квантовой теорией, а просто унификация слабых гравитационных волн с квантовой теорией. Проблемы с теорией гравитонов снова всплыли в начале 1950х, как только люди снова начали изучать, как они могут взаимодействовать друг с другом. С тех пор и до начала 1980х было потрачено много трудов на эту проблему самодействия, чтобы удержать ее от несовместимости с принципами квантовой теории. Ни один из этих трудов не достиг успеха.

Может быть, полезно было бы остановиться и подумать о том, что это означает в человеческих выражениях. Мы говорим о тридцати годах непрерывной тяжелой работы, содержащей много сложных вычислений. Представьте, что вы платите подоходный налог каждый день все дни в течение недели и все еще не получили расчеты, чтобы непротиворечиво согласовать сумму. Где-то вы сделали ошибку, но вы не можете найти, где. Теперь представьте, что месяц прошел таким образом. Сможете вы растянуть его до года? Теперь представьте двадцать лет. Теперь представьте, что имеется пара дюжин людей во всем мире, проводящих время подобно вам. Некоторые друзья, некоторые конкуренты. Все они имеют свои собственные схемы того, как делать их работу. Каждая схема до настоящего времени приводила к неудаче, но если вы попытаетесь слегка изменить подход или объединить два подхода, возможно, вы достигнете успеха. Один раз или дважды в год вы приезжаете на международную конференцию, где вы можете представить свою новую схему другим фанатикам. Такой была область квантовой гравитации до 1984.

Ричард Фейнман был одним из первых, кто атаковал указанную проблему гравитона. А почему нет? Он сделал такую хорошую работу в КЭД, почему он не должен применить те же методы к квантовой гравитации? Так в начале 1960х он провел несколько месяцев вне физики частиц, чтобы посмотреть, не сможет ли он проквантовать гравитацию. Чтобы дать вам представление о том, что затем вынес на берег прилив квантовой гравитации, приведем письмо Фейнмана, которое он написал своей жене в 1962 о собрании в Варшаве, где он представил свою работу:

"Я не получил ничего от этой встречи. Я ничему не научился. Поскольку тут нет экспериментов, эта область не относится к активным, так что немногие из лучших людей трудятся в ней. В результате имеются толпы присосавшихся здесь ... и это не есть хорошо для моего кровяного давления. Напомни мне больше не ходить ни на какие гравитационные конференции."[31]

Тем не менее, он сделал хороший прогресс и весьма прояснил техническую проблему, связанную с вероятностями, которые представляют собой числа между 0 и 1. Обо всем, что определенно происходит, говорят как об имеющем вероятность 1, так что вероятность того, что что-нибудь вообще произойдет, равна 1. До того, как Фейнман сделал свою работу, никто не мог сделать вероятности того, что различные вещи произойдут в квантовой гравитации, сходящимися к 1. На самом деле, Фейнман сделал вероятности сходящимися только на первом уровне приближения; несколькими годами позже Брюс ДеВитт понял, как сделать, чтобы это работало на всех уровнях. Годом или около того позже то же самое поняли двое русских, Людвиг Дмитриевич Фаддеев и Виктор Николаевич Попов. Они не могли знать работу ДеВитта, поскольку журнал послал его статью экспертам для отзыва, и рецензентам потребовалось больше года, чтобы внимательно изучить ее. Так кусочек за кусочком люди решали некоторые проблемы, – но, даже если вероятности могут быть сделаны сходящимися к 1, теория гравитона как целое никогда не работала.

Имелась некоторая сторона, свидетельствующая в пользу этого труда. Тот же метод мог быть применен к теориям Янга-Миллса, на которых была основана стандартная модель. Так что со временем Стивен Вайнберг и Абдус Салам использовали эти теории, чтобы объединить слабое и электромагнитное взаимодействия, технология использовалась вместо реальных вычислений. Результаты оказались лучше, чем в квантовой гравитации. Как, наконец, доказал в 1971 датский теоретик Герард т'Хоофт, теории Янга-Миллса являются полностью осмысленными как квантовые теории. На самом деле т'Хоофт, как и другие до него, изучал теорию Янга-Миллса отчасти для разогрева перед атакой на проблему квантовой гравитации. Так что тридцать лет работ над квантовой гравитацией не были полностью растраченными усилиями; по меньшей мере, это позволило нам сделать осмысленную физику частиц.

Но осталась неупокоенной сама квантовая гравитация. Люди использовали все сорта методов аппроксимации. Поскольку стандартная модель физики частиц была сделана осмысленной, для доказательства ее различных свойств было разработано много методов. Один за одним, каждый из них был применен к проблеме квантовой гравитации. Каждый потерпел неудачу. Не имеет значения, как вы организовали квантовую теорию гравитационных волн, как только вы принимаете за факт, что они взаимодействуют друг с другом, поднимают свою голову бесконечные величины. Не имеет значения, как вы обходили проблему стороной, бесконечности не укрощаются. Много лет работы, множество статей, множество диссертаций на звание доктора философии, множество презентаций на конференциях. Та же самая ситуация. Итог заключался в том, что к 1974 стало ясно, что зависимый от фона подход к объединению ОТО с квантовой теорией не имеет смысла.

Имелась, однако, одна вещь, которую можно было бы сделать с фоново-зависимыми методами. Вместо того, чтобы пытаться проквантовать гравитацию и, тем самым, понять влияние, которое квантовая теория имеет на гравитационные волны, мы могли бы перевернуть проблему и спросить, какое влияние гравитация может оказывать на квантовые явления. Чтобы сделать это, мы могли бы изучить движение квантовых частиц в пространствах-временах, где гравитация важна, таких как черные дыры или расширяющаяся вселенная. Начавшись в 1960х, в этом направлении был достигнут большой прогресс. Это важное направление, поскольку некоторые открытия приводят к загадкам, на решение которых направлены более поздние подходы, такие как теория струн.

Первым успехом было предсказание, что когда гравитационное поле быстро меняется во времени, должны рождаться элементарные частицы. Эта идея смогла быть применена к ранней вселенной, когда она быстро расширялась, и привела к предсказаниям, которые используются по сей день в изучении ранней вселенной.

Успех этих вычислений побудил нескольких физиков попытаться сделать нечто более тяжелое, которое заключалось в изучении влияния, которое черная дыра может оказывать на квантовые частицы или поля. Проблема здесь в том, что, хотя черные дыры имеют область, где геометрия очень быстро эволюционирует, эта область скрыта за горизонтом. Горизонт представляет собой саван для света, который стоит на месте. Он отмечает границу региона, в пределах которого весь свет втягивается вовнутрь, по направлению к центру черной дыры. Так что никакой свет не может спастись из-под горизонта. Снаружи черная дыра кажется статической, но именно внутри ее горизонта есть регион, по направлению к которому все втягивается все более и более сильными гравитационными полями. Они заканчиваются в сингулярности, где все бесконечно и время останавливается.

Первый значительный результат соединения квантовой теории с черными дырами был получен в 1973 Якобом Бекенштейном, молодым израильским аспирантом Джона Арчибальда Уилера в Принстоне. Он сделал ошеломляющее открытие, что черные дыры обладают энтропией. Энтропия есть мера беспорядка, и имеется известный закон, именуемый вторым законом термодинамики, устанавливающий, что энтропия замкнутой системы никогда не может уменьшаться. Бекенштейн озаботился вопросом, что если он взял ящик, заполненный горячим газом, – который должен был иметь много энтропии, поскольку движение молекул газа было хаотическим и неупорядоченным, – и сбросил его в черную дыру, энтропия вселенной будет казаться уменьшившейся, поскольку газ никогда не сможет быть восстановленным. Чтобы сохранить второй закон, Бекенштейн предположил, что черная дыра должна сама иметь энтропию, которая должна была повыситься, когда на нее упал ящик газа, так что полная энтропия вселенной никогда не будет уменьшаться. Обработав несколько простых примеров, он смог показать, что энтропия черной дыры должна быть пропорциональна площади окружающего ее горизонта.

Это приводит к загадке. Энтропия есть мера хаотичности, а хаотическое движение есть теплота. Так что же, черная дыра должна иметь также и температуру? Годом позже, в 1974, Стивен Хокинг смог показать, что черная дыра на самом деле должна иметь температуру. Он также смог установить точный коэффициент пропорциональности между площадью горизонта черной дыры и ее энтропией.

Есть и другая сторона предсказанной Хокингом температуры черных дыр, которая будет важна для нас позднее, и которая заключается в том, что температура черной дыры обратно пропорциональна ее массе. Это означает, что черные дыры ведут себя не так, как привычные объекты. Чтобы нагреть большинство вещей, вы должны подвести к ним энергию. Мы снабжаем огонь топливом. Черные дыры ведут себя противоположным образом. Если вы вводите в нее энергию или массу, вы делаете черную дыру более массивной – и она охлаждается.[32]

Эта головоломка с тех пор бросает вызов каждой попытке создать квантовую теорию гравитации: как мы можем объяснить температуру и энтропию черных дыр из первых принципов? Бекенштейн и Хокинг трактовали черную дыру как классический фиксированный фон, внутри которого двигались квантовые частицы, и их аргументы базировались на состоятельности известных законов. Они не описывали черную дыру как квантовомеханическую систему, поскольку это может быть сделано только в квантовой теории пространства-времени. Так что для любой квантовой теории гравитации является вызовом необходимость дать более глубокое понимание энтропии Бекенштейна и температуры Хокинга.

В следующем году Хокинг нашел еще одну загадку, прятавшуюся в указанных результатах. Поскольку черная дыра имеет температуру, она будет излучать как горячее тело. Но излучение уносит энергию от черной дыры. После достаточного количества времени вся масса черной дыры перейдет в радиацию. Раз она теряет энергию, черная дыра становится легче. И вследствие только что обсужденного мной свойства, когда она теряет массу, она нагревается, так что излучает быстрее и быстрее. В конце этого процесса черная дыра уменьшится до планковской массы, и потребуется квантовая теория гравитации, чтобы предсказать окончательную судьбу черной дыры.

Но какова бы ни была ее окончательная судьба, возникает загадка относительно судьбы информации. В течение жизни черной дыры она втягивает гигантское количество вещества, переносящего гигантское количество внутренней информации. В конце же все, что останется, это много горячей радиации, – которая, будучи хаотичной, не переносит информации совсем, – и микроскопическая черная дыра. Информация просто исчезла?

Это проблема для квантовой гравитации, поскольку в квантовой механике имеется закон, который говорит, что информация никогда не может быть разрушена. Квантовое описание мира предполагается точным, а отсюда вытекает, что, когда все детали приняты во внимание, информация не может быть потеряна. Хокинг сделал сильное утверждение, что испаряющаяся черная дыра теряет информацию. Это кажется противоречащим квантовой теории, так что он назвал это утверждение информационным парадоксом черной дыры. Любая предполагаемая квантовая теория гравитации нуждается в его разрешении.

Эти открытия 1970х были контрольными точками на пути к квантовой теории гравитации. С тех пор мы измеряли успех подхода к квантовой гравитации частично тем, насколько хорошо он отвечает на заданные вопросы по энтропии, температуре и потере информации в черных дырах.

Примерно в это время была, наконец, предложена идея по поводу квантовой гравитации, которая, кажется, работает, по меньшей мере, временами. Она привлекла использование идеи суперсимметрии к гравитации. В результате появилась супергравитация.

Я присутствовал на одной из первых презентаций, когда-либо дававшихся по этой новой теории. Это была конференция в 1975 в Цинциннати по развитию ОТО. Я был все еще студентом в Хэмпширском колледже, но я ходил всюду, надеясь узнать, о чем люди думали. Я помню некоторые прекрасные лекции Роберта Героха из Чикагского университета, который был тогда звездой в области математики бесконечных пространств. Он получил продолжительные овации за одну особенно элегантную демонстрацию. Тогда же было задвинутое в самый конец коференции сообщение молодого постдока по имени Петер ван Ньювенхёйзен. Я вспоминаю, что он изрядно нервничал. Он начал со слов, что он находится здесь, чтобы ввести качественно новую теорию гравитации. Он полностью завладел моим вниманием.

Ван Ньювенхёйзен сказал, что эта новая теория основана на суперсимметрии, тогда новой еще идее по унификации бозонов и фермионов. Частицы, которые мы получаем из квантования гравитационных волн, называются гравитонами, и они являются бозонами. Но для суперсимметричной системы должны быть как бозоны, так и фермионы. ОТО не имеет фермионов, так что новые фермионы должны быть гипотетически суперпартнерами гравитонов. «Сгравитон» не легкое для произношения слово, так что они были названы гравитино.

Поскольку гравитино никогда не наблюдались, он сказал, что мы свободны в придумывании законов, которым они удовлетворяют. Для теории, которая симметрична относительно суперсимметрии, силы не должны изменяться, когда гравитино заменяются на гравитоны. Это устанавливает много ограничений на законы, и поиск решений с такими ограничениями требует недель кропотливых вычислений. Две команды исследователей финишировали почти одновременно. Ван Ньювенхёйзен был частью одной из этих команд; другая включала моего будущего консультанта в Гарварде Стэнли Дезера, который работал с одним из открывателей суперсимметрии, Бруно Зумино.

Ван Ньювенхёйзен также говорил о более глубоком способе подумать о теории. Мы начинаем с размышлений о симметриях пространства и времени. Свойства обычного пространства остаются неизменными, если мы вращаемся, поскольку в нем нет предпочтительного направления. Они также остаются неизменными, если мы движемся от места к месту, поскольку геометрия пространства однородна. Таким образом, трансляции и вращения являются симметриями пространства. Вспомним, что в главе 4 я объяснял калибровочный принцип, который устанавливает, что при некоторых обстоятельствах симметрия может диктовать законы, которым удовлетворяют силы. Вы можете применить этот принцип к симметриям пространства и времени. Результатом будет в точности ОТО Эйнштейна. Это не тот путь, каким Эйнштейн нашел свою теорию, но если бы Эйнштейна не существовало, этим путем ОТО могла бы быть найдена.

Ван Ньювенхёйзен объяснил, что суперсимметрия может рассматриваться как углубление симметрий пространства. Это происходит вследствие глубокого и красивого свойства: Если вы заменяете все фермионы на бозоны, а затем заменяете их назад, вы получаете тот же самый мир, который был до замены, но со всеми вещами, сдвинутыми на маленький кусочек в пространстве. Я не могу здесь объяснить, почему это верно, но это говорит нам, что суперсимметрия некоторым образом фундаментально связана с геометрией пространства. Как следствие, если вы примените калибровочный принцип к суперсимметрии, вы получите теорию гравитации – супергравитацию. С этой точки зрения супергравитация значительно глубже ОТО.

Я был новобранцем в этой области, заглянувшим на конференцию. Я не знал здесь никого, так что я не знал, что слушатели ван Ньювенхёйзена думают о том, что он сказал, но я был глубоко впечатлен. Я шел домой, думая, что это была хорошая вещь, что парень был таким взволнованным, ибо, если то, что он сказал, было верным, это должно быть на самом деле важным.

Во время моего первого года аспирантуры я, конечно, разговаривал со Стэнли Дезером, который читал лекции о новой теории супергравитации. Мне было интересно, и я начал думать о ней, но я был озадачен. Что это все означало? О чем это пыталось нам сказать? У меня появился новый друг, однокурсник по имени Мартин Рочек, он также был возбужден. Он быстро созвонился по телефону с Петером ван Ньювенхёйзеном, который пребывал в городе Стони Брук, Нью-Йорк, и начал сотрудничать с ним и его студентами. Стони Брук был недалеко, и Мартин взял меня с собой в один из визитов туда. Ситуация только начала набирать обороты, и он хотел дать мне шанс включиться в нее самого начала.

Это было, как если бы мне предложили одну их первых работ в Майкрософте или Гугле. Рочек, ван Ньювенхёйзен и многие из тех, с кем я встречался благодаря им, сделали блестящие карьеры на суперсимметрии и супергравитации.

Я согласен, что с их точки зрения я действовал как дурак и упустил великолепную возможность.

Для меня (и для других, с кем я согласен) соединение суперсимметрии и теории пространства и времени вызывает большие вопросы. Я изучал ОТО, читая Эйнштейна, и, если я что-нибудь понял, она о том, как эта теория соединяет гравитацию с геометрией пространства и времени. Эта идея проникла у меня до мозга костей. Теперь мне говорят, что другой глубокий аспект природы также объединяется с пространством и временем – факт, что имеются фермионы и бозоны. Мои друзья говорили мне это, и уравнения говорят то же самое. Но ни друзья, ни уравнения не говорят мне, что это означает. У меня отсутствует идея, концепция вещи. Нечто в моем понимании пространства и времени, гравитации и того, что означает быть фермионом или бозоном, должно углубиться в результате этой унификации. Это должна быть не просто математика – сама моя концепция природы должна измениться.

Но она не меняется. Что я нашел, когда я болтался со студентами ван Ньювенхёйзена, это группу умных, технически аккуратных ребят, яростно проводивших вычисления, днем и ночью. То, что они делали, было придумыванием версий супергравитации. Каждая версия имела больше симметрий, чем последняя, унифицируя большее семейство частиц. Они двигались по направлению к окончательной теории, которая объединила бы все частицы и силы с пространством и временем. Эта теория имеет только техническое название, теория N = 8. N означает число различных способов перепутывания фермионов и бозонов. Первая теория – та, с которой ван Ньювенхёйзен и Дезер меня познакомили, – была простейшая, N = 1. Некоторые люди в Европе работали над N = 2. Неделю, что я был в Стони Брук, люди там двигались к N = 4 на своем пути к N = 8.

Они работали день и ночь, откладывая прием пищи и мирясь со скукой работы, с эйфористичной уверенностью, что они находятся рядом с чем-то новым, что изменит мир. Один из них говорил мне, что он работал так быстро, как только мог, поскольку он был уверен, что, когда было произнесено слово о том, насколько легко делать новые теории, область должна была быть заполнена. В самом деле, если я правильно помню, эта группа достигла N = 4, но они хотели сорвать куш в N = 8.

То, что они делали, не было легким для меня. Вычисления были головоломными, растянутыми и утомительными. Они требовали полной точности. Если где-нибудь терялся множитель 2, недели труда можно было выбрасывать. Каждая строчка расчетов имела дюжины членов. Чтобы уместить строчку расчетов на странице, они прибегали ко все большим и большим листам бумаги. Скоро они носили с собой гигантские папки, которые используют художники, самые большие, какие они смогли найти. Они покрывали каждый лист мелкими, аккуратными рукописями. Каждая папка представляла месяцы работы. Приходило на ум слово «монашеский». Я был в ужасе. Я выдержал неделю и сбежал.

В течение десятилетий после этого я имел несколько некомфортные отношения с Петером, Мартином и другими. Может быть, я рассматривался как неудачник, ибо убежал, когда они предложили мне благоприятную возможность присоединиться к ним в запуске супергравитации. Если бы я присоединился, я мог бы хорошо устроиться, чтобы стать одним из лидеров струнной теории. Вместо этого я ушел в моем собственном направлении, в итоге помогая в поиске иных подходов к квантовой гравитации. Это даже ухудшило ситуацию: я был не только неудачником, который покинул правоверных, я был неудачником с опасностью стать конкурентом.

Когда я размышляю о научных карьерах людей, которых я знал эти последние тридцать лет, мне кажется все больше и больше, что решения об этих карьерах зависят от характера. Некоторые люди успешно набрасываются на следующее большое дело, отдавая ему все, что имеют, и, таким образом, делают важные вклады в быстро развивающиеся области. Другие просто не имеют темперамента, чтобы сделать это. Некоторым людям нужно все очень тщательно обдумать, а это требует времени, так что они легко сбиваются с толку. Не трудно почувствовать превосходство над такими людьми, пока вы не вспомните, что Эйнштейн был одним из них. По моему опыту, по-настоящему поразительные новые идеи и инновации имеют тенденцию исходить от таких людей. Кроме того, другие – и я принадлежу к этой третьей группе – просто следуют своему собственному пути, и не будут покидать свои области без лучшей причины, чем то, что их задевает, что некоторые люди присоединяются, потому что хорошо чувствуют себя на побеждающей стороне. Так что я больше не беспокоюсь, когда я не согласен с тем, что делают другие люди, поскольку я вижу, что темперамент в большой степени определяет, каким видом науки они будут заниматься. К счастью для науки, необходимы вклады всего диапазона типов участников. Я пришел к мысли, что те, кто делает хорошую науку, делают ее потому, что они выбирают подходящие для себя проблемы.

В любом случае, я покинул группу супергравитации в Стони Бруке, но я не потерял интереса к супергравитации. Напротив, я заинтересован больше, чем когда-либо. Я уверен, что они двигались к чему-то, но выбранная ими дорога была не той, по которой я мог бы следовать. Я понял эйнштейновскую ОТО, что означает, что я знал, как продемонстрировать любое ее существенное свойство на страничке или менее краткой и прозрачной работы. Мне кажется, что если вы поняли теорию, то, чтобы отметить ее основные свойства, не должно требоваться недель расчетов на художественном планшете.

Я объединился с другим аспирантом – моим другом из Хэмпширского колледжа Джоном Деллом, который был в университете Мэриленда. Мы хотели понять более глубоко, как получается, что суперсимметрия является частью геометрии пространства и времени. Он нашел некоторые статьи математика по имени Бертрам Костант по новому виду геометрии, который расширял математику Эйнштейна, используя добавление новых свойств, которые, казалось, вели себя немного похоже на фермионы. Мы записали уравнения ОТО в этом новом контексте, и неожиданно появились некоторые уравнения супергравитации. Мы получили нашу первую научную статью.

Примерно в то же время другие разработали альтернативный подход к геометрии для супергравитации, названный супергеометрией. Я тогда почувствовал (и чувствую сейчас), что их схема более громоздкая, чем наша. Она намного более сложна, но в определенных вещах она работает намного лучше. Это помогло отчасти упростить вычисления, и это определенно было оценено. Так что супергеометрия осталась, а наша работа была забыта. Ни Джон, ни я не беспокоились, поскольку ни один подход не давал нам того, чего мы искали. Несмотря на то, что математика работала, она не приводила ни к какому концептуальному скачку. До настоящего дня я не думаю, что кто-нибудь по-настоящему понимает, что означает супергравитация, чего фундаментального она говорит о природе, – если она верна.

Много лет спустя я думаю, что я, наконец, могу полностью выразить, что в те ранние дни увело меня прочь от супергравитации. Изучая физику через штудирование Эйнштейна в оригинале, я получил представление о способе размышлений, который приводил к революционным новым унификациям физики. Я ожидал, что новая унификация начинается с глубокого принципа, подобного принципу инерции или принципу эквивалентности. Вы должны будете извлечь из него глубокое и удивительное прозрение, что две вещи, которые вы некогда рассматривали как несвязанные, на самом деле по существу являются одной вещью. Энергия есть масса. Движение и покой неразличимы. Ускорение и гравитация одно и то же.

Супергравитация этого не делает. Хотя она на самом деле является предложением новой унификации, она из тех вещей, которые могут быть выражены и зафиксированы только через головоломные скучные расчеты. Я могу работать с математикой, но это не тот путь, по которому я учился делать науку через мои чтения Эйнштейна и других мастеров.

Другой друг, которого я приобрел в это время, был Келлог Штелле, который был на несколько лет старше меня и, как и я, был студентом Стэнли Дезера. Вместе они проанализировали вопрос, будет ли супергравитация вести себя лучше, чем ОТО, при объединении с квантовой теорией. Поскольку еще не было прогресса в независимых от фона методах, они, как и любые другие, использовали зависимый от фона метод, который так прискорбно потерпел неудачу, когда его применили к ОТО. Они быстро смогли увидеть, что он работает лучше, когда его применили к супергравитации. Они отметили первое место, где в квантовой ОТО появляется бесконечность, и нашли вместо нее конечное число.

Это были хорошие новости: суперсимметрия на самом деле улучшила ситуацию! Но эйфория продолжалась не долго. Дезеру и Штелле потребовалось еще только несколько месяцев, чтобы убедиться, что бесконечности в супергравитации возникают в большом количестве в том же направлении. Реальные расчеты были слишком сложны, чтобы их проделать даже после месяцев труда на художественных планшетах, но они нашли способ проверить, будут ли результаты, в конечном счете, конечными или бесконечными, и оказалось, что все ответы, более точные, чем те, которые они смогли получить – и которые оказались конечными, – должны быть бесконечными.

Однако, они еще не протестировали в этом же ключе все другие формы супергравитации. Возможно, одна из них в конечном счете дала бы последовательную квантовую теорию. Шаг за шагом каждая форма была изучена. Каждая из них была на немного более конечной, так что вы смогли уйти дальше в последовательности приближений, пока проверка не закончилась неудачей. Хотя все расчеты были слишком тяжелы для исполнения, казалось, нет оснований для любого другого ответа, кроме того, что бесконечная часть имеет место. Была слабая надежда, что конечная теория, известная N = 8, будет отличаться. Она, наконец, была сконструирована героическими усилиями, предпринятыми в Париже. Но она тоже не прошла тест – хотя для нее еще сохраняется некоторая надежда.

Супергравитация была и остается поразительной теорией. Но сама по себе она не достаточна, чтобы решить проблему квантовой гравитации.

Таким образом, к началу 1980х прогресса в создании теории квантовой гравитации не было. Все, что было проверено, вплоть до супергравитации включительно, потерпело неудачу. В то время как калибровочные теории торжествовали, область квантовой гравитации пребывала в застое. Те немногие из нас, кто настаивал на беспокойстве по поводу квантовой гравитации, чувствовали себя подобно выпускнику средней школы, приглашенному понаблюдать, как его сестра выпускается из Гарварда с одновременными степенями по медицине, нейробиологии и истории танца в античной Индии.

Если неудача супергравитации в попытке привести к хорошей теории квантовой гравитации и подавила нас, тем не менее, она также была освобождающей. Все легкие вещи были проверены. За десятилетия мы попытались построить теорию через расширение методов Фейнмана и его друзей. Теперь осталось попытаться сделать только две вещи: Отбросить методы, базирующиеся на фиксированной фоновой геометрии, или отбросить идею, что вещи, двигающиеся через фоновую геометрию, являются частицами. Оба подхода были исследованы, и оба достигли – на первых порах – впечатляющих успехов на дороге к квантовой гравитации.


1   2   3   4   5   6   7   8   9   10   ...   24

Похожие:

Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconНеприятности с физикой: взлет теории струн, упадок науки и что за этим следует

Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconВ. А. Шемшук Сыроедение путь к Бессмертию
В то время как пища, вызывающая неприятные ощущения, приводит к неприятностям по жизни. И оказалось, что неприятная пища питает не...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconВладимир Шемшук «Сыроедение путь к Бессмертию»
В то время как пища, вызывающая неприятные ощущения, приводит к неприятностям по жизни. И оказалось, что неприятная пища питает не...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconУрок №1 тема: Введение
Определение теории государства и права как науки. Цель, объект и предмет исследования
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconВведение в психологию физического воспитания и спорта
Указанные закономерности являются объектом исследования данной науки. Они соотносятся с представлением об области действительности,...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconВведение в психологию физического воспитания и спорта
Указанные закономерности являются объектом исследования данной науки. Они соотносятся с представлением об области действительности,...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconИстория науки и ее рациональные реконструкции введение «Философия...
Действительно, в силу автономии внутренней (но не внешней) истории внешняя история не имеет существенного значения для понимания...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение icon3. Грамматическая структура слова и вопросы словообразования
Маслов Ю. С. Введение в языкознание оглавление предисловие Введение. Что такое н наука о языке? Глава I. Сущность языка: его общественные...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconТема введение в экономическую теорию
Предыстория и основные этапы становления экономической теории как науки: донаучный этап, меркантилизм, физиократия, классическая...
Ли Смолин Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует оглавление введение iconКонспект лекций лектор д т. н профессор А. И. Раков Севастополь 2008...
Процесс управления предприятием, его информационное и техническое обеспечение 168
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница