Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1


НазваниеУкрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1
страница8/9
Дата публикации06.05.2013
Размер1.03 Mb.
ТипЗакон
userdocs.ru > География > Закон
1   2   3   4   5   6   7   8   9
Таблица 3.33 – Пример матрицы выигрышей

Стратегии

стороны Аi

Стратегии стороны Вj

Наименьший

выигрыш

В1

В2

В3

В4

А1

11

15

13

10

10

А2

12

14

11

16

11

А3

9

11

12

15

9

Наибольший

проигрыш

12

15

13

16



В этом примере сторона А имеет три возможные стратегии А1, А2, А3, а В – четыре (В1, В2, В3, В4). Сторона А не знает, как поступит сторона В, однако действуя наиболее целесообразно, она должна выбирать стратегию А2, которая гарантирует ей наибольший (11) из трех наименьших выигрышей (10,11,9).

Принято называть, что сторона руководствуется принципом максиминного выигрыша:

.

Определяемая таким образом величина (а) называется нижней ценой игры, максиминным выигрышем или максимином. Для приведенного примера а=11.

Если рассуждать аналогично, то сторона В должна выбирать стратегию В1, которая гарантирует ей наименьший (12) из четырех возможных наибольших проигрышей, т.е. она руководствуется принципом максиминного проигрыша:

.

Величина (b) называется верхней ценой игры, или минимаксом. Для приведенного примера b=12.

Справедливо, что b≥a.

Такая стратегия игроков называется принципом минимакса или принципом осторожности.

Если а = в, то такая точка называется седловой.

Рациональные правила поведения сторон:

1. Если известна стратегия стороны В, то сторона А должна выбрать Ai, которая дает максимальный выигрыш.

2. Если стратегия В неизвестна, то сторона А должна воспользоваться своей максиминной стратегией.

3. Если стратегия В неизвестна, но состязательная игра имеет седловую точку, то наиболее выгодно для стороны А не отклоняться от оптимальной точки, соответствующей седловой.

Если матрица игры не имеет седловой точки, то оказывается, что для определения успеха необходимо выбирать стратегии А и В с определенными вероятностями (частотами) при многократной игре. Такие стратегии называются смешанными.

Решение игровых задач в смешанных стратегиях осуществляется по итеративным алгоритмам Брауна или Неймана или сводится к задаче линейного программирования.

В основе алгоритма Брауна (фиктивной игры) лежит предположение, что игра играется много раз, а игроки выбирают свои стратегии, руководствуясь опытом ранее сыгранных партий.

Если считать, что выполнено k итераций и в результате получены оценки смешанных стратегий Ac = (A1, A2, ..., Ak) игрока А и Bc = (B1, B2, ..., Bk) игрока В, то на очередной итерации игроком А выбирается такая чистая стратегия, которая обеспечит ему максимум в предположении, что игрок В применит смешанную стратегию Bc. Аналогично В применяет чистую стратегию, которая дает минимум выигрыша А, если последним будет использована смешанная стратегия Ac.

Для парной игры с нулевой суммой обозначим вероятность применения стратегии Ai через pi, а Bj через qj (Ai – стратегия стороны А, Bj – стратегия стороны В).

Сумма вероятностей всех стратегий для каждой из сторон равна 1:

Тогда ;.

Средний выигрыш стороны А

,

где m и n – соответственно число различных стратегий сторон А и В.

Для поиска оптимума необходимо взять частные производные и приравнять их к нулю

;

.

Решение системы дает оптимальные значения вероятностей piопт и qjопт , которые должны быть больше нуля и меньше единицы.

Решение может быть получено реализацией итерационного процесса путем многократного имитационного моделирования игры. Например, следующей стратегией стороны А для приведенного примера является стратегия А1, дающую максимум при стратегии противоположной стороны В1, а сторона В применит стратегию В3, которая дает минимум выигрыша стороной А при ее предыдущей стратегии А2. При следующей итерации сторона А должна применить стратегию А1, дающую максимум выигрыша (14+14=28) при предыдущих стратегиях (В1,В3) противоположной стороны, а стороне В необходимо применить стратегию В3, которая дает минимум выигрыша стороной А при ее предыдущих стратегиях А2 и А1(11+14=25). Аналогично итерационный процесс моделирования проводят до равенства значений цен игры сторон с заданной точностью. Пример игры для пяти итераций приведен в таблице 3.34. Для рассматриваемого примера на 5-й итерации средняя цена игры стороны А равна 11.4 ( 57/5) и стороны В – 11.8 (59/5).

1   2   3   4   5   6   7   8   9

Похожие:

Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconКурс «Статистические методы управления качеством» специальность 200503...
Особенности эмпирических данных. Случайные величины. Распределения случайных величин. Статистические гипотезы
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconКоллоквиум 2 тв и мс
Числовые характеристики случайных величин: математическое ожидание (понятие, свойства)
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconЗакон больших чисел
Корреляционная матрица случайного вектора. Коэффициент корреляции двух случайных величин
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconАвтокорреляция случайного возмущения. Причины. Последствия
Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconЗакон распределения Пуассона и его характеристики
Локальная предельная теорема Муавра-Лапласа. Теорема Пуассона Понятие случайной величины. Виды случайных величин
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconЗачет Казаринова Ирина Николаевна Старовойтова Ольга Рафаэльевна...
Методология, методика, программа, метод, алгоритм исследования, парадигма, научная традиция
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 icon2: Элементы векторной алгебры
Различают понятия величин, которые характеризуются од -ним числом скалярные величины (например: масса, объём, длина, площадь и т...
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconНа рисунке 1 приведен график зависимости скорости движения тела от...
Чему равно отношение силы гравитационного взаимодействия, действующей со стороны Луны на Землю, к силе гравитационного взаимодействия,...
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconЧто такое метрология?
Размерность качественная характеристика физических величин. Правила определения размерности производных величин
Укрупненный алгоритм программы для исследования случайных величин приведен на рисунке 12. 1 iconПрограмма учебного курса «Физическая география России»
В конце программы приведен перечень экзаменационных вопросов за все три семестра: два на 4 курсе и 1 на пятом курсе см!!!
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница