Элементы химической термодинамики Основные понятия


Скачать 428.24 Kb.
НазваниеЭлементы химической термодинамики Основные понятия
страница1/3
Дата публикации20.04.2013
Размер428.24 Kb.
ТипЛекция
userdocs.ru > Химия > Лекция
  1   2   3
Лекция 5

Элементы химической термодинамики

Основные понятия
 Термодинамика (от греч. Theme – тепло + Dinamis – сила) - наука о превращениях различных видов энергии при взаимодействиях между объектами, которые ограничиваются тепловым обменом и работой. Она исторически возникла как эмпирическая наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Однако в процессе своего развития термодинамика позволила теоретически предсказать многие явления задолго до появления теории, описывающей эти явления. Изучением химических и физико-химических процессов занимается часть термодинамики, называемая химической термодинамикой.

Химическая термодинамика рассматривает явления, относящиеся к области химии: изучает зависимость свойств веществ от их химического состава и строения, от условий существования данного вещества. Она базируется на двух основных законах, называемых первым (закон А. Лавуазье и П. Лапласа и вторым законами (закон Герман (Генрих) Ивановича Гесса ) термодинамики. В химической термодинамике рассматриваются только системы, в которых отсутствуют направленные потоки теплоты, концентрации, давления – системы, находящиеся в термодинамическом равновесии. Для удобства изучения необходимо изолировать объекты исследования от окружающего пространства и поэтому образующийся объект термодинамического изучения называется системой. Система - это тело или группа тел, или совокупность веществ, находящихся во взаимодействии и обособленных от окружающей их внешней среды. Внешняя среда - это все, что окружает систему. Между системой и внешней средой существует истинная или условная граница раздела.

Различают системы гомогенные, внутри которых нет поверхностей раздела, отделяющих друг от друга части системы, различающиеся по свойствам, и гетерогенные - имеющие поверхности раздела.

Фаза - это совокупность всех гомогенных частей системы, одинаковых по составу и по всем физическим и химическим свойствам, не зависящим от количества вещества и ограниченных от других частей системы некоторой поверхностью раздела. Однако, не всегда фаза имеет на всем протяжении одинаковые физические свойства и однородный химический состав. Фаза может быть прерывна, например, кусочки льда, плавающие на поверхности воды.

Вещества, входящие в состав фаз, называются компонентами, или составными частями системы, они могут быть выделены из системы и существовать вне её.

Системы могут по-разному взаимодействовать с внешней средой. Открытая система обменивается с внешней средой и энергией, и веществом. Закрытая система обменивается с внешней средой только энергией. Изолированной системой называют такую, которая лишена возможности обмена веществом или энергией с окружающей средой и которая имеет постоянный объём (изменение объема всегда связано с производством работы).

В каждый момент времени состояние системы характеризуется термодинамическими параметрами состояния, то есть какими-то физическими свойства. Термодинамические параметры: температура, давление объём и концентрация.  Совокупность термодинамических параметров определяет термодинамическое состояние системы. Изменение термодинамического состояния системы называется термодинамическим процессом.

Термодинамический процесс - это всякое изменение состояния системы, связанное с изменением хотя бы одного параметра. Совокупность промежуточных состояний, через которые проходит система, называют путем процесса. Различают пути процесса:

1. Изобарный (Р = const);

2. Изохорный (V = соnst);

3. Изотермический (Т = соnst);

4. Изобарно-изотермический (Р и Т = соnst);

5. Изохорно-изотермический (V и Т = соnst);

6. Адиабатный, в котором отсутствует обмен теплотой между системой и внешней средой, но может быть связь работой.

Каждую систему можно описать с помощью уравнений состояния, которыми являются:

1) закон Бойля-Мариотта: Р1V1 = Р2V2;

2)       закон Шарля:  V1Т2 = V2T1;

3)       закон Гей-Люссака: Р1Т2 = Р2Т1;

4)       уравнение Менделеева-Клапейрона:   РV = mRT/M;

5)   объединенное уравнение газового состояния: .
^ Внутренняя энергия. Первый закон термодинамики. Энтальпия
Энергия существует в различных видах и каждый вид энергии является соответствующей формой движения материи.

Внутренняя энергия (U) системы - это одна из важнейших величин в химической термодинамике. Это параметр состояния, термодинамически определяемый на основе первого начала. Физический смысл внутренней энергии заключается в том, что она характеризует общий запас энергии системы. Сюда входят все виды энергии (вращательного и поступательного движения молекул, энергия внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергия вращения электронов в атомах, и т.д.). Но не включает потенциальную энергию положения системы в пространстве и кинетическую энергию движения системы как целого. Внутренняя энергия (U) - функция состояния, - ее значение зависит от начального и конечного состояния системы и не зависит от пути перехода системы из начального состояния в конечное. Абсолютную величину внутренней энергии системы определить пока невозможно и так как неизвестным остается значение Uо (при Т = 0 К), но можно измерить изменение ∆U , происходящее в том или ином процессе. Величина ∆U считается положительной, когда в рассматриваемом процессе внутренняя энергия системы возрастает.

Пусть некоторая система за счет поглощенной теплоты (Q) переходит из одного состояния в другое. В общем случае эта теплота затрачивается на изменение внутренней энергии системы U=U2U1  и на совершение работы против сил внешнего воздействия А, то есть Q = ∆U + A . Это уравнение - математическое выражение  первого закона (первое  начало)  термодинамики (закон сохранения энергии).

Первый закон термодинамики непосредственно связан с законом сохранения энергии, который устанавливает эквивалентность различных её форм: различные формы энергии переходят друг в друга в строго эквивалентных, всегда одинаковых соотношениях. Отсюда вытекает, что в любой изолированной системе общий запас энергии остается постоянным.

Для процессов с бесконечно малыми изменениями dQ = dU + dA,

где dU - функция состояния (полный дифференциал), dQ и dА - функции процесса, то есть зависят от способа совершения (осуществления) процесса и выражают бесконечно малые количества теплоты и работы.

Из этого соотношения вытекает ряд следствий:

1. Для кругового процесса в котором  ∆U = U2 – U1 = 0 , соблюдается равенство

Q = A;  (dQ = dA)

2. Для изотермического (изотермного) процесса, в котором работа совершается против внешнего давления dA = pdV, имеем

dQ =  dU + pdV   или Q = ∆U + p∆V

3. Для изохорных процессов, где не происходит изменения объема, то есть

∆V = 0 или dV = 0, и работа А = 0, переходу системы из одного состояния в другое отвечает равенство

Q = U2 – U1 = ∆U, или dQ = dU

4. Для изобарных процессов, при Р = соnst:

Q = (U2-U1) + p(V2-V1) = (U2 + pV2) – (U1 + pV1);

приращение функции U + рV обозначим Н, Q = H2 – H1 =  ∆H, где Н - энтальпия, или

dQ = .

Энтальпию часто называют теплосодержанием системы, но это не количество теплоты в теле. Ее изменение, как и изменение внутренней энергии системы, не зависит от пути процесса, так как изменение объема при постоянном давлении определяется только начальным и конечным состоянием системы. Разница между внутренней энергией U и энтальпией Н относительно невелика для конденсированных состояний и для веществ в кристаллическом состоянии не превышает ≈ 5 %. Но разница значительна для систем, содержащих вещества в газообразном состоянии.

Изменение энтальпии может иметь положительное и отрицательное значение. Положительное значение, ∆H > 0 соответствует эндотермическому процессу, то есть процессу, идущему с поглощением теплоты, а отрицательное значение, ∆H < 0 - экзотермическому, то есть процессу, идущему с выделением теплоты (рис. 35). Энергия передается от одной части системы к другой в форме теплоты или в форме работы. Теплота не является функцией состояния, то есть количество теплоты, выделяемой или поглощаемой системой при переходе из одного состояния в другое, зависит от пути перехода. Но для изохорных и изобарных процессов, теплота превращается в функцию состояния.

^ Тепловым эффектом процесса называют сумму поглощаемой теплоты и всей работы, выполняемой окружающей средой над данной системой, за вычетом работы внешнего давления. Для изохорно-изотермических процессов тепловой эффект равен изменению внутренней энергии системы ∆U = U2 – U1, а для изобарно-изотермических - изменению энтальпии                 ∆H = H2 – H1.

Таким образом, при постоянной температуре в изохорных и в изобарных процессах тепловой эффект не зависит от пути перехода и однозначно определяется начальным и конечным состояниями системы.
^ Закон Гесса. Следствия из него

 

Уравнения химических реакций, в которых указаны их тепловые эффекты и агрегатные состояния компонентов называются термохимическими. От агрегатных состояний веществ зависит состояние системы в целом и в термохимических уравнениях с помощью буквенных индексов (тв.), (кр.), (ж.), (г.) обозначается твердое, кристаллическое, жидкое, газообразное состояние веществ.

В термохимических уравнениях допускаются дробные коэффициенты, так как тепловой эффект рассчитывается на 1 моль образовавшегося вещества. Например, для химической реакции

Н2 + Сl2 = 2НСl

термохимическое уравнение записывается так

1/2Н2(г) + 1/2Сl2(г) = НСl(г) + 92,3 кДж или

1/2Н2(г) + 1/2Сl2(г) = НСl(г); ∆Н = - 92,3 кДж.

 Данный процесс экзотермичен, так как количество энергии, выделившейся при образовании связи H–Cl  превышает расход энергии, затрачиваемый на разрыв связей

Н-Н и Cl-Cl.

Сравнение тепловых эффектов различных процессов проводят при одинаковых, стандартных условиях:   температуре   298 К   (25 °С)   и   давлении  Р = 101 325 Па

= 760 мм. рт. ст. = 1 атм. Определенные для веществ в стандартном состоянии стандартные энтальпии и другие стандартные термодинамические величины обозначают верхним индексом (°), нижним индексом указывают температуру, при которой они определены: ∆Hо298, ∆Uо298 (определены при 298  К) или ∆Но1000, ∆U°1000 (определены при 1000 К). Такое единообразие делает расчёты строгими.

Стандартная энтальпия образования вещества ∆Но298 - это изменение энтальпии в процессе образования данного вещества в стандартном состоянии из термодинамически устойчивых форм простых веществ, также находящихся в стандартных состояниях.

Для многих веществ стандартные энтальпии образования известны и сведены в таблицы. Стандартные значения энтальпии простых веществ, если их модификации устойчивы при стандартных условиях, равны нулю. Например, ∆Hо298 (H2(г)) = 0 .

Если стандартная энтальпия образования отрицательна, соединение более устойчиво, чем простые вещества, из которых оно образовалось и наоборот. В ряду однотипных соединений, чем меньше стандартная энтальпия образования соединения (∆Hо298), тем больше его термическая устойчивость относительно разложения на простые вещества. Например, в ряду  ZnO  →  CdO →  HgO  более устойчивым является   ZnO, так как       ∆Hо298(ZnO) = -350,6 кДж/моль,  ∆Hо298(CdO) =  -260,0 кДж/моль,   ∆Hо298(HgO) = +99,9 кДж/моль  или в ряду  NH3 → PH3 → AsH3 → SbH3         (∆Hо298(NH3) = -46,15 кДж/моль,            ∆Hо298(PH3) = +12,96 кДж/моль, ∆Hо298(AsH3) = +66,38 кДж/моль, ∆Hо298(SbH3) = +145,00 кДж/моль)  газообразный NH3 является устойчивым соединением, PH3 и AsH3 – неустойчивы (нестабильны), SbH3 – разлагается в момент получения.

Обобщение экспериментальных исследований по тепловым эффектам химических реакций привело русского ученого Г. И. Гесса к открытию закона в 1840 г., носящего его имя (закон Гесса). Это второй закон термохимии: "Тепловой эффект процесса зависит только от вида и состояния исходных веществ и конечных продуктов, но не зависит от пути перехода". То есть если из данных исходных веществ можно различными способами получить заданные конечные продукты, то независимо от путей получения суммарный тепловой эффект будет одним и тем же.


^ Герман (Генрих) Иванович  Гесс(1802-1850)


 Закон Гесса справедлив для изохорных и изобарных процессов. Пусть идет реакция

аА + вВ = mM + nN

Продукты реакции М и N могут быть получены различными путями: 1) непосредственно реакцией, тепловой эффект которой равен ∆Н1; 2) реакциями, тепловые эффекты которых равны соответственно ∆Н2, , ∆Н3, и ∆Н4; 3) рядом реакций с тепловыми эффектами ∆Н5 , ∆Н6 , ∆Н7 и ∆Н8. Эти тепловые эффекты, согласно закону Гесса, связаны между собой соотношением        ∆Н1 = ∆Н2 + ∆Н3 + ∆Н4 = ∆Н5 + ∆Н6 + ∆Н7 + ∆Н8 .

Закон Гесса широко применяется при различных термохимических расчетах; дает возможность вычислить тепловые эффекты процессов с отсутствующими экспериментальными данными или в процессах, для которых тепловые эффекты не могут быть измерены, или если процессы еще не осуществились. Если известны энтальпии образования всех веществ, участвующих в реакции, то можно рассчитать тепловой эффект любой реакции.

f:\modul1\общая химия\shemagess.jpg

 

Так, образование СО2 из простых веществ может происходить двумя путями. Прямой путь – непосредственное сгорание графита до СО2

С(графит) + О2(г) → СО2(г); ∆Н1о = -393,5 кДж.

Косвенный путь – суммарный процесс образования и окисления СО

С(графит) + ½ О2(г) → СО(г); ∆Н2о = -110,5 кДж.

СО(г) + ½ О2(г) → СО2(г); ∆Н3о = -283,0 кДж.

С(графит) + О2(г) → СО2(г)

 Рассмотренные превращения отражает схема

                                                                                                                             

начальное состояние  С(графит) + О2(г) -------→  СО2(г) конечное состояние

При сложение ∆Н2о  + ∆Н3о = -110,5 + (-283,0) = -393,5 кДж, что соответствует значению ∆Н3о = -393,5 кДж.

Из закона Гесса, который является одним из следствий закона сохранения энергии, вытекает ряд выводов. Наиболее важны из них два:

^ 1) тепловой эффект химической реакции при р = соnst равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ с учетом коэффициентов перед формулами веществ в уравнении; то есть для реакции

aA + bB = mM + nN

∆Hох.р. = (mНообр. М + nHoобр. N) – (aHoобр.А + bHoобр. В)

 2) тепловой эффект реакции горения равен разности между суммой теплот сгорания исходных веществ и суммой теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов:

∆Hох.р. = (aНообр.A + bHoобр. B) – (mHoобр.M + nHoобр. N)

Первое следствие имеет общее значение, второе важно для органических соединений. Первый закон термодинамики имеет универсальный характер, он применим и для одной молекулы, и для большого числа молекул; но он не указывает на характер, возможности и направление процессов, при которых могут или будут происходить превращения энергии.
  1   2   3

Похожие:

Элементы химической термодинамики Основные понятия iconЭкзаменационные вопросы по химии Основные понятия термодинамики....
Второе начало термодинамики. Термодинамические факторы, определяющие направление химических реакций
Элементы химической термодинамики Основные понятия iconПредмет и методы теплотехники (технической термодинамики), ее основные задачи
Метод термодинамики представляет собой строгое математическое развитие законов термодинамики. В настоящее время в термодинамике используются...
Элементы химической термодинамики Основные понятия iconВопросы к экзамену по курсу «Физические основы производства» гр....
Основное содержание и цели термодинамики. Термодинамические параметры и функции состояния. Основные определения термодинамики. Термодинамический...
Элементы химической термодинамики Основные понятия iconОсновные понятия и определения молекулярной физики и термодинамики
Молекулярная физика – раздел физики, изучающий свойства тел в зависимости от характера движения и взаимодействия частиц, образующих...
Элементы химической термодинамики Основные понятия iconВопросы для подготовки к экзаменам по общей химии для студентов лечебного
Взаимосвязь между процессами обмена веществ и энергии в организме. Химическая термодинамика как теоретическая основа биоэнергетики....
Элементы химической термодинамики Основные понятия iconВопросы к экзамену по курсу «Элементы автоматики»
Системы автоматики. Основные понятия и определения (автомат, автоматика, автоматизация, автоматическое управление, автоматический...
Элементы химической термодинамики Основные понятия iconЗакон термодинамики примениние закона для изобарно-изотермических процессов
Хим. Термодинамика-часть термодинамики,которая рассматривает превращения энергии и работы при химических реакциях
Элементы химической термодинамики Основные понятия iconПрограмма курса лекций теоретические основы химической технологии...
Этапы формирования химической технологии как науки. Тенденции развития химической технологии
Элементы химической термодинамики Основные понятия iconЛабораторная работа №4 Тема: круглый стол: «Архитектура и структура...
Цель занятия: изучить понятия архитектуры и структуры эвм, основные виды структур эвм, понятие принципа открытой архитектуры современных...
Элементы химической термодинамики Основные понятия iconI закон термодинамики закон превращения и сохранения энергии
...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница