1. Определение числовой функции. Способы задания функций


Скачать 277.88 Kb.
Название1. Определение числовой функции. Способы задания функций
страница1/4
Дата публикации05.05.2013
Размер277.88 Kb.
ТипДокументы
userdocs.ru > Информатика > Документы
  1   2   3   4
1.Определение числовой функции. Способы задания функций.

Пусть имеются два множества Х и Y. Пусть указано правило, по которому каждому элементу х принадлеж. Х сопоставляется некоторый(единств.) элемент у принадлеж. У. Тогда говорят, что задана функция из Х в У. Числовая функция характерез. тем, что оба множества Х и У состоят из чисел х- аргумент, у- функция. 3 способа задания: 1)Табличный (область определения из конечного множества чисел) 2) Аналитический –задание с помощью формулы. 3) Графический.4) словесный.
2. Понятие обратной функции.

Если существует отображение У в Х, такое, что каждому соотв. единственное значение х, то существует обратная функция х=(y)
^ 3. Понятие сложной функции. Пусть даны две функции z = f(y) и у = g(x). Сложной функцией (или композицией функций f и g) называется функция z = h(x), значения которой вычисляются по правилу h(x) = f(g(x)) (т. е. сначала вычисляется g(x), при этом получается некоторое число у, а затем вычисляется значение в точке у).

4. Числовые последовательности. Называется числовая функция, определенная на множестве натуральных чисел. Последовательность обозначается: , n=1, 2,… или .
5. Определение предела последовательности.

число А называется пределом последовательности {Хn}, если для любого положительного Е существует номер n0, начиная с которого все члены последовательности отличаются от А по модулю меньше, чем на Е.

6. Свойства пределов числовых последовательностей.

1)Сходящаяся последовательность имеет только один предел.

2) Сходящаяся последовательность ограничена. Мн-во чисел назыв. ограниченным, если сущ. такой отрезок [a,b] числовой оси, который содержит все числа из Х.

3)Если члены сход последовательности {Xn} удовлетворяют неравенству Xn>=b, то и lim Xn >= b
7. Правила вычисления пределов сходящихся последовательностей.

1) lim(Xn + Yn)= a+b 2) lim (Xn*Yn)=a*b 3)lim 1/Yn = 1/b, если у и б не равны 0 4) lim Xn/Yn= a/b
8. Определение ограниченной последовательности.

Ограниченная последовательность (ограниченная с обеих сторон последовательность) — это последовательность, ограниченная и сверху, и снизу. Ограниченная сверху последовательность — это последовательность элементов множества X, все члены которой не превышают некоторого элемента из этого множества. Этот элемент называется верхней гранью данной последовательности. Ограниченная снизу последовательность — это последовательность элементов множества X, для которой в этом множестве найдётся элемент, не превышающий всех её членов. Этот элемент называется нижней гранью данной последовательности.
9. Определение бесконечно малой последовательности.

Бесконечно малая последовательность — это последовательность, предел которой равен нулю.
10. Свойства бесконечно малых последовательностей.

1) Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью. 2)Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью. 3) Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью. 4)Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность. 5) Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность. 6) Любая бесконечно малая последовательность ограничена.
11. определение беск. большой последовательности.

Послед-ь {Xn} называется бб, если для любого положительного числа ε существует номер N такой, что при n > N выполняется неравенство |Xn| > ε. (lim (n→∞) Xn = ∞ ).

12. свойства б.б.последовательностей.

1)б.б.последовательность является неограниченной.

2)Сумма б.б. и ограниченной послед-тей есть бесконечно большая послед-ть.

3)Сумма двух б.б. послед-тей одного знака есть б.б. того знака.

4)произведение б.б. послед-ти и ограниченной от нуля есть б.б. последовательность.
13.Определение монотонных последовательностей.

Последовательнсть {Хn} назыв.: возрастающей, если ХnX(n+1) для всех n; неубывающей, Хn≥X(n+1) для всех n
14. определение предела функции в точке.

Число а называется пределом функции f (x) в точке X0 (или пределом при X→ X0) если для любой сходящейся к точке X0 послед-и значений аргумента, отличных от X0, соответствующая послед-ь значений функции сходится к числу а, т. е.

lim Xn = X0 (Xn ≠ X0) => lim f(Xn) = a; lim (X→ X0) f(x) = a.
15.Свойства пределов функций.

1) Если существует, то он единственный.

2)Если ф-ция f(x) имеет предел в точке X0, то в некоторой окрестности этой точки ф-ция ограничена,т.е. сущ-ет такая (проколотая) окрестность точки X0 и такое число А>0,что│f(x)│≤А для всех Х из этой окрестности

3) Если для всех точек Х некоторой окрестности точки Х0 выполняется неравенство f(x)≥b, то и limf(x)≥b, если только указанный предел существует.

4)Если в некоторой окрестности точки Х0 имеем f(x)≥g(x), то и limf(x)≥limg(x), если только указанные пределы сущ-ют.

5)Пусть в некоторой окрестности точки Х0 выполняются неравенства f(x)≥g(x)≥h(x),причём пределы f(x) и h(x) при Х→Х0 сущ-ют и равны между собой .Тогда предел g(x) при Х→Х0 также сущ-ет и равен тем пределам.
16Правила вычисления пределов функций.

Пусть функции , имеют предел при и

,

а)

б)

в) (при условии, что ).

г)(при условии, что ).

д)


17.определение бесконечно малой функции.

Функция называется бесконечно малой при , если

.
18.определение бесконечно большой функции.

Функцию называют бесконечно большой при Х , стремящемся к Х0, если для любой последовательности

() значений аргумента, стремящейся к Х0, соответствующая последовательность значений функции является бесконечно большой. Записывают: .

19. Первый замечательный предел.

lim (sinx/x)=1 при x→0
20. Второй замечательный предел
Lim(1+ 1/n)n = e

x→∞

21. Дайте определения односторонних пределов функции в точке

Число А называется правым пределом функции f(x) при х → а, если для любого ξ > 0 существует такое δ, что для всех х, удовлетворяющих неравенству а < х < а + δ, выполняется неравенство | f(x) - А |< ξ.

Число А называется левым пределом функции f(x) при х → а, если для любого ξ > 0 существует такое δ, что для всех х, удовлетворяющих неравенству а - δ < х < а, выполняется неравенство | f(x) - А |< ξ.
1. Приведите примеры: а) послед-и, сходящейся к числу 3; б) ограниченной послед-и, не имеющей предела.

Число а называется пределом числовой послед-и {Xn}, если для любого положительного числа ε существует номер N из множества Ñ такой, что для любого n ≥ N выполняется неравенство: | Xn – a | < ε

√ ε > 0, сущ. N є Ñ, √ n ≥ N => | Xn – a | < ε

А) Xn = (3n+1)/n, lim (n→∞) (3n+1)/n = 3

б) Xn = (-1)ⁿ - ограничена (-1), не имеет предела

2. Докажите, исходя из определения предела послед-и, что lim (n→∞) 2n/n+4 = 2.

| Xn – a | < ε

|2n/n+4 - 2| < ε, |-8/n+4| < ε, 8/n+4 < ε, n+4/8 >1/ε, n > (8 - 4ε)/ε, N = [8/ε - 4] +1

3. Докажите, что сходящаяся послед-ь имеет только один предел

От противного Предп, что некоторая послед-ь {Xn} имеет 2 разл предела а и b, a ≠ b.

Выберем столь малые окрестности т. a и b, чтобы они не имели общ точек. Т.к. lim Xn = a, все Xn, начиная с нек номера n1, содержатся в выбран окрестности т. а;

точно так же из lim Xn = b, следует, что все Xn, начиная с нек номера n2, содержатся в выбранной окрестности т. b. Положим, n0 = max {n1, n2}. Тогда числа Xn с номерами n≥ n0 должны принадлежать как первой, так и второй окрестности, что невозможно, так как окрестности не имеют общих точек.

4. Докажите ограниченность сход послед-и

док-во:

Пусть lim Xn = a. Положим ε = 1 и найдем номер n0, начиная с которого | Xn – a | < 1, т. е. -1>Xn – a<1 для n≥ n0. Отсюда следует а-1>Xn<а+1 для всех n≥ n0. Заменим отрезок [а-1; а+1] таким отрезком [А;В], чтобы в него попали не только числа Xn, n≥ n0, но и все числа х1, х2,…хn0. Тогда будем иметь хn є [А;В] для всех n є N, что означает ограниченность множества {Хn}.
5. Дайте определение послед-и, ограниченной сверху. Может ли предел послед-и, ограниченной снизу числом 6, быть равным: а) 5,98; б) 6,02

Послед-ь называется ограниченной сверху, если существует число m, такое, что любой элемент Xn этой послед-и удовлетворяет неравенству m ≥ Xn.

Предел послед., огранич. сверху числом 6, не может быть равным 6,02, но может быть равным 5,98, так как мы можем брать только числа меньше 6 (6≥Xn ).

6. Что можно сказать о пределе суммы двух сходящихся послед-ей? Приведите пример расходящихся послед-ей, сумма которых сходится.

1) Алгебраическая сумма двух сходящихся послед-ей {Хn} и {Уn} есть сходящаяся послед-ь, предел которой равен сумме пределов послед-ей {Хn} и {Уn}.

lim (n→∞) Xn = a, lim (n→∞) Уn = b: lim (n→∞) (Xn + Уn) = a + b.

2) an = (-1)ⁿ: -1; 1; -1; 1…- расход.

bn = (-1)^(n+1): 1; -1; 1; -1…- расход.

lim (n→∞) (an + bn) = 0

7. Что можно сказать о пределе произведения двух сходящихся послед-ей? Приведите пример расходящихся послед-ей, произведение которых сходится.

1) Произведение двух сходящихся послед-ей {Хn} и {Уn} есть сходящаяся послед-ь, предел которой равен произведению пределов послед-ей {Хn} и {Уn}.

lim (n→∞) Xn = a, lim (n→∞) Уn = b: lim (n→∞) (Xn * Уn) = a * b.

2) an = (-1)ⁿ: -1; 1; -1; 1…- расход.

bn = -1/2, 1/2, -2/3, 2/3, -3/4, 3/4: (-n/ n + 1)ⁿ

lim (n→∞) (an * bn) = 1 – сход. (1/2, 1/2, 2/3, 2/3…).

8. Может ли послед-ь {Xn + Yn} сходиться, если послед-ь {Xn} сходится, а послед-ь {Yn} расходится? Ответ обоснуйте.

нет, не может: С + ∞ = ∞

Xn = (1/2)ⁿ: 1/2, 1/4…

Yn = (-1)ⁿ: -1, 1..

-1 + ½ = -1/2; -1 + 1/8 = -7/8 – сход. к (-1)

1 + ¼ = 1 ¼; 1 + 1/16 = 1 1/16 – сход. к 1

{Xn + Yn} – расход.

9. Дайте определение бесконечно малой (бм) послед-и. Приведите примеры бм послед-ей, отношение которых: а) является бм послед-ью; б) не является бм послед-ью.

Послед-ь {αn} называется бм, если lim (n→∞) αn = 0.

Для любого ε > 0, сущ. N, такое, что для любого n ≥ N | αn | < ε.

а) 1/n, 1/ ^4√n – бм послед-и: ^4√n/ n = n^-3/4 – бм послед-ь

б) n/ ^4√n = n^3/4 - не бм послед-ь

10. Докажите, что произведение бм и ограниченной послед-ей является бм послед-ью.

док-во:

Пусть {Хn} – ограниченная, а {αn} – бм послед-и. Доказать, что {Xn * αn} – бм. Так как {Хn} ограниченна, то существует число А > 0 такое, что любой элемент Хn удовлетворяет неравенству | Хn | ≤ А. Возьмем любое ε > 0. Поскольку {αn} – бм, то для положительного числа ε/А существует номер N такой, что при n > N выполняется неравенство | αn | < ε/А. Тогда при n > N |Xn * αn | = |Xn| * | αn | < A * ε/A = ε. Это означает, что послед-ь {Xn * αn} – бм.

11. Докажите, что предел произведения двух функций равен произведению их пределов, если последние существуют.

Из условия lim u=a, lim v=b следует u=a+α, v= b+β.

Рассмотрим u×v=( a+α)(b+β)=ab+bα+aβ +αβ → u×v=ab+µ → lim u×v=a×b

12. Дайте определение бесконечно большой (бб) послед-и. Что означает запись «lim (n→∞) Xn = +∞»? Докажите, исходя из определения, что lim (n→∞) √n + 9 = +∞.

1) Послед-ь {Xn} называется бб, если для любого положительного числа А существует номер N такой, что при n > N выполняется неравенство |Xn| > A. (lim (n→∞) Xn = ∞ ).

Для любого A > 0, сущ. N, для любого n ≥ N: |Xn| > A.

2) Если, начиная с некоторого номера, все Xn > 0, то lim (n→∞) Xn = +∞ (Xn > A).

3) √n + 9 > A => √n + 9 > 0 => lim (n→∞) √n + 9 = +∞; N = [A² - 9] + 1.

13. Всякая ли неограниченная послед-ь является бесконечно большой? Ответ обоснуйте.

Любая бб послед-ь является неограниченной. Однако неограниченная послед-ь может и не быть бб послед-ью. Например, неограниченная послед-ь 1, 2, 1, 3 .., 1, n, 1, n + 1 … не является бб, поскольку при А > 1 неравенство |Xn| > A не имеет места для всех элементов Xn с нечетными номерами.
14. Дайте определение предела функции в точке. Найдите, исходя из определения , lim (x→1) (7x + 3)/x² + 7. Приведите пример функции, не имеющей предела в точке x = 1.

1) Число а называется пределом функции f (x) в точке X0 (или пределом при X→ X0) если для любой сходящейся к точке X0 послед-и значений аргумента, отличных от X0, соответствующая послед-ь значений функции сходится к числу а, т. е.

lim Xn = X0 (Xn ≠ X0) => lim f(Xn) = a; lim (X→ X0) f(x) = a.

2) lim (x→1) (7x + 3)/x² + 7 = 5/4

3) y = x/x - 1 – функция, не имеющая предела в точке X = 1 (уходит в разные стороны, дробно-линейная функция).

15. Докажите, что предел суммы двух функций равен сумме их пределов, если последние существуют.

(не совсем с функциями связано, но то же свойство, вроде, может подойдет, что-то другого ничего нету)

Пусть a и b – соответственно пределы {Xn} и {Yn}. Тогда Xn = a + αn, Yn = b + βn, где {αn} и {βn} – бм послед-и. Следовательно, (Xn±Yn) – (a±b) = αn ± βn.

Послед-ь {αn ± βn} – бм. Таким образом, послед-ь {(Xn±Yn) – (a±b)} также бм и поэтому послед-ь (Xn±Yn) сходится и имеет своим пределом число a±b.

16. Докажите, что функция f(x) = sin 1/x не имеет предела в точке x = 0.

lim (x→0) sin 1/x по Гейне lim (n→∞) Xn = X0, lim(x→0+0) 1/x = +∞, lim(x→0-0) 1/x = - ∞

lim (x→0+0) sin 1/x – не сущ. sin (x→0-0) 1/x – не сущ.

17. Может ли функция f(x) +g(x) быть непрерывной в точке х0, если функция f(x) непрерывна, а функция g(x) имеет разрыв в этой точке, а функция g(x)имеет разрыв в этой точке. ответ обоснуйте.

Нет. Так как есть теорема, в которой говорится. Если f(x) и g(x)- непрерывные функции в точке x0, то непрерывными являются .

.f(x)=c-является непрерывной и f(x)=x.
18 Найдите значение а, при котором функция f(x) = x arctg (1/x), x≠0, является непрерывной в точке x=0.

lim (x→ x0) f(x) = f(x0)

является непрерывной в точке x = 0

следовательно

следовательно а=0

22. Функция y = f (x), определенная в некоторой окрестности точки х0 , называется непрерывной в этой точке, если предел функции в точке х0 существует и равен значению в этой точке: lim х → х0 f(x) = f(x0).
  1   2   3   4

Похожие:

1. Определение числовой функции. Способы задания функций icon1. Определение числовой функции. Способы задания функций
Тогда говорят, что задана функция из Х в У. Числовая функция характерез тем, что оба множества Х и у состоят из чисел Х- аргумент,...
1. Определение числовой функции. Способы задания функций iconВопросы для самопроверки по дисциплине
Понятие функции. Способы задания функций. Область определения. Четные и нечетные, ограниченные, монотонные функции. Примеры
1. Определение числовой функции. Способы задания функций iconЛабораторная работа №1. Перегрузка функций. Шаблоны функций
Цель работы – изучить определение и варианты использования перегрузки функций и шаблонов функций в языке С++
1. Определение числовой функции. Способы задания функций iconТема Тип урока и форма проведения
Знать опр-ие функции, область определения, область значения. Четные и нечетные функции, графики функций. Уметь находить E(f); D(f)...
1. Определение числовой функции. Способы задания функций iconПонятие функции. Способы задания
Теорема Больцано-Вейерштрасса о существовании частичного предела у ограниченной последовательности
1. Определение числовой функции. Способы задания функций iconИсследование функции >12. Значения обратных тригонометрических функций
Определение: Последовательность, у которой задан первый член a1, а каждый следующий равен
1. Определение числовой функции. Способы задания функций iconАсимптоты графика функции. Определение
Определение. Прямая называется вертикальной асимптотой графика функции, если или
1. Определение числовой функции. Способы задания функций iconЛабораторная работа № Управление персоналом как система Методические указания
Для выполнения задания студентам предлагается перечень функций службы управления персоналом, составленный в свободной последовательности....
1. Определение числовой функции. Способы задания функций iconФормулы тройных углов Обратные тригонометрические функции Некоторые...
Алгебраические функции — это функции, заданные аналитическим выражением, в записи которого используются алгебраические операции над...
1. Определение числовой функции. Способы задания функций iconВопрос №5. 1: Производная функции, ее геометрический и механический...
Вопрос №5. 1: Производная функции, ее геометрический и механический смысл. Вычисление производных основных элементарных функций....
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница