Методы изучения взаимосвязей


НазваниеМетоды изучения взаимосвязей
страница1/4
Дата публикации12.04.2013
Размер0.54 Mb.
ТипДокументы
userdocs.ru > Математика > Документы
  1   2   3   4
МЕТОДЫ ИЗУЧЕНИЯ ВЗАИМОСВЯЗЕЙ
Важнейшей целью статистики является изучение объективно существующих связей между явлениями. В ходе статистического исследования этих связей необходимо выявить причинно-следственные зависимости между показателями, т.е. насколько изменение одних показателей зависит от изменения других показателей.

Существует две категории зависимостей (функциональная и корреляционная) и две группы признаков (признаки-факторы и результативные признаки). В отличие от функциональной связи, где существует полное соответствие между факторными и результативными признаками, в корреляционной связи отсутствует это полное соответствие.

Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примером корреляционной зависимости могут быть зависимости между производительностью труда и заработной платой.

^ Корреляционно-регрессионный метод анализа

Наиболее простым вариантом корреляционной зависимости является парная корреляция, т.е. зависимость между двумя признаками (результативным и факторным или между двумя факторными). Математически эту зависимость можно выразить как зависимость результативного показателя у от факторного показателя х. Связи могут быть прямые и обратные. В первом случае с увеличением признака х увеличивается и признак у, при обратной связи с увеличением признака х уменьшается признак у.

Важнейшей задачей является определение формы связи с последующим расчетом параметров уравнения, или, иначе, нахождение уравнения связи (уравнения регрессии).

Другая важнейшая задача - измерение тесноты зависимости - для всех форм связи может быть решена при помощи вычисления эмпирического корреляционного отношения :



^ Коэффициент детерминации

Линейный коэффициент корреляции оценивает тесноту взаимосвязи между признаками и показывает, является ли связь прямой или обратной. Но понятие тесноты взаимосвязи часто может быть недостаточным при содержательном анализе взаимосвязей. В частности, коэффициент корреляции не показывает степень воздействия факторного признака на результативный. Таким показателем является коэффициент детерминации 2, для случая линейной связи представляющий собой квадрат парного линейного коэффициента корреляции или квадрат множественного коэффициента корреляции. Его значение определяет долю (в процентах) изменений, обусловленных влиянием факторного признака, в общей изменчивости результативного признака.

^ Статистические методы изучения производственных показателе

предприятия. Корреляционно – регрессионный метод.
Способы и приемы экономико-статистического анализа можно условно подразделить на две группы: традиционные и математические.

В число основных традиционных способов и приемов экономико-статистического анализа можно включить сле­дующее:

• статистическое наблюдение;

• сводка;

• группировка;

• расчет обобщающих показателей;

• выборочный метод;

• анализ рядов динамики;

• индексный метод анализа;

• основы корреляционного и регрессионного анализа;

• метод цепных подстановок;

• балансовый метод.

При этом статистические методы не ограничиваются простым сопоставлением показателей за различные периоды. Важно выявить факторы, повлиявшие на изменение показателей, исследовать их фактическую повторяемость и определить вероятность повторения тех или иных явлений и результатов. Например, контроль за качеством позволяет установить вероятность дефектных изделий.

Для метода группировки необходимо и достаточное количество интервалов в каждой группе. С его помощью осуществляется разбиение совокупности на однородные группы, установление связи и ее направление.

Индексный метод является гибким аналитическим инструментом и может применяться в анализе показателе производственной, финансовой, инвестиционной и других видах деятельности предприятия (фирмы).

Корреляционный и регрессионный анализ являются довольно сложной операцией. Исходными предпосылками для их проведения являются: случайный характер факторов, нормальное распределение факторов и результативного показателя, стохастическая независимость факторов.

Достоинством метода дисперсионного анализа является возможность его применения в изучении зависимостей качественных признаков.

Все большее значение в экономическом анализе получают методы факторного анализа. Он позволяет интерпретировать массивы наблюдений и является методом сжатия исходной информации.

В зависимости от специфики решаемых задач целесообразно сочетание различных методов анализа.

Методы экономико-статистического анализа носят универсальный характер и не зависят от отраслевой принадлежности предприятия, позволяют менеджеру анализировать положение дел на предприятии, разрабатывать варианты управленческих решений, выбирать наиболее эффективные формы, оценивать влияние этих решений на результаты деятельности предприятия.
^ Виды и формы связей между явлениями
Существуют два вида связи: функциональная и корреляционная, которые обусловлены двумя типами закономерности: динамической и статистической.

При функциональной зависимости величине факторного признака строго соответствует одно или несколько значений другой величины (функции). В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции (при постоянной численности рабочих). Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.

При функциональной связи изменение результативного признака всецело зависит от изменения факторного признака :

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака.

В различных процессах, характеризующихся статистическим закономерностями, нет строгой зависимости между причиной и результатом, и обычно не предоставляется возможным выявить строгую зависимость явлений от факторов, потому что закономерности складываются под влиянием множества причин и условий.

При корреляционной связи изменение результативного признака не всецело зависит от факторного признака , а лишь частично, так как возможно влияние прочих факторов : .

Корреляционная связь является свободной, неполной и неточной связью. Например, себестоимость величины продукции зависит от уровня производительности труда: чем выше производительность труда, тем ниже себестоимость. Но себестоимость зависит также и от ряда других факторов: стоимости сырья и материалов, топлива, электроэнергии, их расхода на единицу продукции, цеховых и общезаводских расходов и т.д. Поэтому нельзя утверждать, что при повышении производительности труда, допустим, на 10% себестоимость снизится также на 10%. Может случиться, что, несмотря на рост производительности труда, себестоимость не только не снизится, но даже несколько повысится, если на нее окажут более сильное влияние действующие в обратном направлении другие факторы.

Аналогично, можно провести рассуждения при изучении связи между производительностью труда и заработной платой. Величина заработной платы работников зависит не только от производительности труда, но и от ряда других факторов: инфляционные процесс в стране; рентабельность предприятия в целом; направление деятельности предприятия. Например, при увеличении производительности труда заработная плата рабочих предприятия может не увеличиться вследствие роста цен на сырьё. Значит, между производительностью труда и заработной платой существует корреляционная зависимость.

Корреляционная зависимость проявляется только в средних величинах и выражает соотношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых, наоборот, рост факторного признака сопровождается уменьшением результативного. Такие связи также можно назвать соответственно  положительными и отрицательными.

По аналитическому выражению корреляционная связь может быть прямолинейной и криволинейной. Прямолинейной называется связь, когда величина явления изменяется приблизительно равномерно в соответствии с изменением величины влияющего фактора. Математически прямолинейная связь может быть выражена уравнением прямой: .

Если происходит неравномерное изменение явления в связи с изменением величины влияющего фактора, то такая связь называется криволинейной. Математически криволинейная зависимость может быть выражена уравнением криволинейной связи (уравнение параболы, показательная, степенная, логарифмическая функции и другие)

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

^ Методы изучения взаимосвязей экономических явлений. Метод аналитических группировок

Для изучения, измерения и количественного выражения взаимосвязей между явлениями статистикой применяются различные методы, такие как: метод сопоставления параллельных рядов, балансовый, графический, методы аналитических группировок, дисперсионного и корреляционного анализа.

^ Метод параллельных рядов заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.

^ Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними. Результаты аналитической группировки представляют в виде итоговой статистической таблицы. В расчетной части по данным 30 предприятий выполнена аналитическая группировка, результаты которой представлены в итоговой таблице.


Таблица 1.

Результаты аналитической группировки




Группы предприятий

по уровню производительности труда, тыс. руб./чел

Число предприятий

Уровень производительности, тыс. руб./чел

Средняя заработная плата. тыс. руб.

всего

среднее

всего

среднее

1

120 – 168

3

410

136,67

133

44,33

2

168 – 216

4

740

185

232

58

3

216 – 264

12

2911

242,58

907

75,58

4

264 - 312

7

2012

287,43

631

90,14

5

312 - 360

4

1350

337,5

447

111,8

всего




30

7423

247,43

2350

78,33



Таким образом, гипотеза о наличии прямой зависимости между производительностью труда и заработной платой подтверждается. В группе с самой низкой производительностью труда – 136,67 тыс. руб./чел. заработная плата так же самая низкая и составляет 44,33 тыс. руб./чел. В группе с самой высокой производительностью труда – 337,5 тыс. руб./чел. наблюдается и самый высокий уровень заработной платы – 11,8 тыс. руб. Таким образом рост производительности труда в 337,5 / 136,67 = 2,47 раз приводит к увеличению заработной платы в 111,8 / 44,33 = 2,52 раза. Следовательно, можно сделать предположение о пропорциональном увеличении заработной платы в зависимости от роста производительности труда. Другим словами, можно предположить, что взаимосвязь между факторами может быть выражена линейной зависимостью.


^ Корреляционно-регрессионный анализ и его возможности
Корреляционный анализ является одним из методов статистического анализа взаимосвязи нескольких признаков.

Он определяется как метод, применяемый тогда, когда данные наблюдения можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону. Основная задача корреляционного анализа (являющаяся основной и в регрессионном анализе) состоит в оценке уравнения регрессии.

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

  1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

  2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков.

  3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным признаком и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить “полезность” факторных признаков при построении уравнений множественной регрессии. Величина коэффициентов корреляции служит также оценкой соответствия уравнению регрессии выявленным причинно-следственным связям.

Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. И корреляция, и регрессия служат для установления соотношений между явлениями и для определения наличия или отсутствия связи между ними.

  1   2   3   4

Похожие:

Методы изучения взаимосвязей iconМетоды изучения культуры
Учебное пособие предназначено для студентов вузов, начинающих исследователей в области изучения теории и истории культуры
Методы изучения взаимосвязей iconТезисы Каковы основные методы регистрации физиологических процессов...
...
Методы изучения взаимосвязей iconВопросы для подготовки к коллоквиуму №1 по разделам «Методы изучения...
«Методы изучения живого. Организация живого» и «Генетический материал. Структура и функции»
Методы изучения взаимосвязей iconВопросы к экзамену по инфраструктуре Методы изучения потребностей...
Методы изучения потребностей туристов. Факторы, влияющие на потребность и спрос населения
Методы изучения взаимосвязей iconИммунные реакции используют при диагностических и иммунологических...
С этой целью применяют серологические методы (от лат serum сыворотка и logos учение), т е методы изучения антител и антигенов с помощью...
Методы изучения взаимосвязей iconВажное значение в статистических исследованиях коммерческой деятельности...
Полученные на основе этого метода показатели используются для характеристики развития анализируемых показателей во времени, по территории,...
Методы изучения взаимосвязей iconОпределить теоретико-методологические основы исследования системы...
Поставленные цель и задачи достигаются при помощи таких методов исследования как методы изучения документов, нормативно-правовых...
Методы изучения взаимосвязей iconРоссийская академия наук
Методы изучения, прогноз и картирование опасных природных и техноприродных процессов
Методы изучения взаимосвязей iconВопросы для самоконтроля
Культурология применяет различные методы изучения культуры. Главными из них являются
Методы изучения взаимосвязей iconМетоды изучения медицинской генетики
В клинической генетике для диагностики различных форм наследственной патологии применяются
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница