Вопросы к экзамену по курсу «Высшая математика»


Скачать 31.83 Kb.
НазваниеВопросы к экзамену по курсу «Высшая математика»
Дата публикации05.05.2013
Размер31.83 Kb.
ТипВопросы к экзамену
userdocs.ru > Математика > Вопросы к экзамену
Вопросы к экзамену по курсу «Высшая математика»

(1 курс, 1 семестр)
1. Понятие множества и подмножества. Операции над множествами (объединение, пересечение, разность, симметрическая разность). Дополнение множества, принцип двойственности, формулы де Моргана. Декартово произведение, экспонента множества.

2. Отображение множеств, отношение эквивалентности, классы эквивалентности, фактормножество.

3. Эквивалентность множеств, мощность множества.

4. Числовые множества (множество натуральных чисел, множество рациональных чисел, множество действительных чисел).

5. Определение группы, таблица умножения группы, подгруппы, коммутативные и некоммутативные группы, дискретные и непрерывные группы, циклическая группа, симметрическая группа, свойства таблицы умножения группы.

6. Изоморфные группы, теорема Кэли, смежные классы, теорема Лагранжа, классы сопряженных элементов, инвариантные подгруппы, фактор-группа.

7. Определение поля, примеры полей.

8. Определение комплексного числа, формы записи комплексного числа (геометрическая, алгебраическая, тригонометрическая и показательная).

9. Действия над комплексными числами (сложение, умножение, деление, возведение в степень, извлечение корня).

10. Определение матрицы, виды матриц (прямоугольная, квадратная, симметрическая, кососимметрическая, треугольная, диагональная, единичная, нулевая).

11. Операции над матрицами (сложение, умножение на число, транспонирование, умножение, вычисление следа матрицы).

12. Определитель матрицы, свойства определителей.

13. Обратная матрица, ранг матрицы.

14. Группы матриц.

15. Определение системы линейных алгебраических уравнений (СЛАУ), виды СЛАУ, определение решения СЛАУ, совместные и несовместные СЛАУ, определенные и неопределенные СЛАУ, теорема Кронекера-Капелли.

16. Решение квадратных (однородных и неоднородных) СЛАУ, формулы Крамера, решение прямоугольных СЛАУ, метод Гаусса.

17. Декартова система координат, преобразования декартовой системы координат (параллельный перенос и поворот осей координат), полярная система координат.

18. Различные виды уравнений прямой на плоскости (общее уравнение прямой; уравнение прямой с угловым коэффициентом; уравнение прямой в отрезках; уравнение прямой, проходящей через заданную точку с заданным направлением; уравнение прямой, проходящей через две заданные точки; нормальное уравнение прямой; уравнение прямой, проходящей через заданную точку и перпендикулярной заданному вектору; уравнение прямой в полярной системе координат).

19. Расположение прямых на плоскости (условия совпадения и параллельности прямых, угол между прямыми, условие перпендикулярности прямых), расстояние от точки до прямой.

20. Общее уравнение линий второго порядка, приведение уравнения к каноническому виду. Классификация кривых второго порядка.

21. Окружность, эллипс, гипербола, парабола.

22. Понятия геометрического вектора и векторного пространства, операции над векторами, коллинеарность и компланарность векторов, проекции вектора на ось и направляющие косинусы, координаты вектора, операции с векторами на координатном языке.

23. Скалярное, векторное и смешанное произведения векторов.

24. Понятие метрического пространства.

25. Определение числовой последовательности, предел последовательности, вычисление пределов последовательностей, бесконечно малые и бесконечно большие последовательности, второй замечательный предел.

26. Определение функции и способы ее задания, четные и нечетные функции, периодические функции, классификация функций одного аргумента, графики основных элементарных функций.

27. Предел функции в точке, односторонние пределы, бесконечно большие функции, ограниченные функции, бесконечно малые функции, сравнение бесконечно малых функций, символ «о малое» и его свойства.

28. Свойства пределов, типы неопределенностей, техника вычисления пределов, первый замечательный предел.

29. Асимптотические формулы и их применение к вычислению пределов.

30. Непрерывность функции в точке и в интервале, свойства непрерывных функций, равномерная непрерывность функции, точки разрыва и их классификация.

31. Определение производной и ее геометрическая и физическая интерпретация, таблица производных основных элементарных функций.

32. Правила дифференцирования (дифференцирование суммы, произведения и частного, дифференцирование обратной функции, дифференцирование сложной функции).

33. Правила дифференцирования (дифференцирование функции, заданной параметрически, дифференцирование векторной функции, дифференцирование неявных функций, логарифмическое дифференцирование).

34. Дифференциал функции, свойства дифференциала, применение дифференциала к приближенным вычислениям, уравнения касательной и нормали.

35. Греческий алфавит.

Похожие:

Вопросы к экзамену по курсу «Высшая математика» iconВопросы к экзамену по курсу «Психология»
Мышление как высшая форма познавательной деятельности. Виды мышления, основные мыслительные операции
Вопросы к экзамену по курсу «Высшая математика» iconВысшая математика
...
Вопросы к экзамену по курсу «Высшая математика» iconВопросы к экзамену по курсу "Криминалистика"
Примерные вопросы к экзамену по курсу "Криминалистика" специальность 021100 "Юриспруденция"
Вопросы к экзамену по курсу «Высшая математика» iconПрограмма курса "высшая математика"
Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении
Вопросы к экзамену по курсу «Высшая математика» iconПрактикум Минск 2011 Тематический план
Белько И. В., Кузьмич К. К. Высшая математика для экономистов. Экспресс-Курс. – М.: 2007
Вопросы к экзамену по курсу «Высшая математика» iconЛитература. Виленкин И. В., Гробер В. М. Высшая математика для студентов...
Виленкин И. В., Гробер В. М. Высшая математика для студентов экономических, технических, естественно-научных специальностей вузов....
Вопросы к экзамену по курсу «Высшая математика» iconТесты по курсу «Криминология» Контрольные вопросы к экзамену
Примерный перечень тем и методические рекомендации для выполнения курсовых и дипломных работ по курсу «Криминология»
Вопросы к экзамену по курсу «Высшая математика» iconМетодические указания по организации самостоятельной работы и аудиторных...
Методические указания предназначены для студентов первого курса, обучающихся на специальности 141403. 65 «Атомные станции: проектирование,...
Вопросы к экзамену по курсу «Высшая математика» iconВопросы к экзамену по курсу «Экономика»

Вопросы к экзамену по курсу «Высшая математика» iconВопросы к экзамену по курсу «Социология»

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница