— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение


Название— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение
страница1/7
Дата публикации23.03.2013
Размер0.91 Mb.
ТипДокументы
userdocs.ru > Математика > Документы
  1   2   3   4   5   6   7
1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь. Понятие материальной точ­ки — абстрактное, но его введение облег­чает решение практических задач. Напри­мер, изучая движение планет по орбитам вокруг Солнца, можно принять их за мате­риальные точки.

Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между со­бой части, каждая из которых рассматри­вается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы матери­альных точек. В механике сначала изуча­ют движение одной материальной точки, а затем переходят к изучению движения системы материальных точек.

Под воздействием тел друг на друга тела могут деформироваться, т. е. изме­нять свою форму и размеры. Поэтому в механике вводится еще одна модель — абсолютно твердое тело. Абсолютно твер­дым телом называется тело, которое ни при каких условиях не может деформиро­ваться и при всех условиях расстояние между двумя точками (или точнее между



двумя частицами) этого тела остается по­стоянным.

Любое движение твердого тела можно представить как комбинацию поступатель­ного и вращательного движений. Поступа­тельное движение — это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движениеэто движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Движение тел происходит в простран­стве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Положение материальной точки опре­деляется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета. С ним связы­вается система отсчета — совокупность системы координат и часов, связанных с телом отсчета. В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент вре­мени по отношению к этой системе ха­рактеризуется тремя координатами х, у и z или радиусом-вектором r, проведен­ным из начала системы координат в дан­ную точку (рис. 1).

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями



эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) (соответственно (1.2)) называются кинематическими уравнения­ми движения материальной точки.




Число независимых координат, полно­стью определяющих положение точки в пространстве, называется числом степе­ней свободы. Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя степенями свободы (координаты х, у и z); если она движется по некоторой поверхно­сти, то — двумя степенями свободы, ес­ли — вдоль некоторой линии, то — одной степенью свободы.

Исключая t в уравнениях (1.1) и (1.2), получим уравнение траектории движения материальной точки. Траекто­рия движения материальной точки — ли­ния, описываемая этой точкой в простран­стве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис.2). Отсчет времени начнем с момен­та, когда точка находилась в положении А. Длина участка траектории АВ, прой­денного материальной точкой с момента начала отсчета времени, называется дли­ной пути As и является скалярной фун­кцией времени: s = s(t). Вектор r=r-r0, проведенный из начального положе­ния движущейся точки в положение ее в. данный момент времени (приращение радиуса-вектора точки за рассматривае­мый промежуток времени), называется пе­ремещением.

При прямолинейном движении вектор перемещения совпадает с соответствую­щим участком траектории и модуль пе­ремещения |r| равен пройденному пу­ти s.
Скорость

Для характеристики движения материаль­ной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответ­ствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени t точка прой­дет путь As и получит элементарное (бес­конечно малое) перемещение r.

^ Вектором средней скорости > назы­вается отношение приращения r радиуса-вектора точки к промежутку времени t:



Направление вектора средней скоро­сти совпадает с направлением r. При неограниченном уменьшении t средняя скорость стремится к предельному значе­нию, которое называется мгновенной ско­ростью v:



Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущей­ся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касатель­ной к траектории в сторону движения (рис. 3). По мере уменьшения t путь s все больше будет приближаться к |r|, поэтому модуль мгновенной скорости





10

Таким образом, модуль мгновенной скоро­сти равен первой производной пути по времени:



^ При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной (v) —средней ско­ростью неравномерного движения:



Если выражение ds = vdt (см. форму­лу (2.2)) проинтегрировать по времени в пределах от t до t+t, то найдем длину пути, пройденного точкой за время t:



В случае равномерного движения число­вое значение мгновенной скорости посто­янно; тогда выражение (2.3) примет вид



Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом



Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величи­ной, характеризующей быстроту измене­ния скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т. е. такое, при котором все участки тра­ектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки



А в момент времени t. За время t движу­щаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v1=v + v. Перенесем вектор v1 в точку А и найдем v (рис.4).

^ Средним ускорением неравномерного движения в интервале от t до t+t на­зывается векторная величина, равная от­ношению изменения скорости v к интер­валу времени t:



Мгновенным ускорением а (ускорени­ем) материальной точки в момент време­ни t будет предел среднего ускорения:



Таким образом, ускорение а есть вектор­ная величина, равная первой производной скорости по времени.

Разложим вектор v на две составля­ющие. Для этого из точки ^ А (рис. 4) по направлению скорости v отложим вектор

AD, по модулю равный v1. Очевидно, что вектор CD, равный v, определяет изме­нение скорости по модулю за время t: v=v1- v. Вторая же составляющая вектора v-vn характеризует изменение скорости за время t по направлению.

Тангенциальная составляющая уско­рения


т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю. Найдем вторую составляющую ускоре­ния. Допустим, что точка В достаточно близка к точке А, поэтому As можно счи­тать дугой окружности некоторого радиу­са r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует vn/AB = v1/r, но так как AB = vt, то



В пределе при t0 получим v1v.

Поскольку v1v, угол EAD стремится к нулю, а так как треугольник EAD равно­бедренный, то угол ADE между v и vn стремится к прямому. Следовательно, при t0 векторы vn и v оказываются взаим­но перпендикулярными. Так как вектор скорости направлен по касательной к тра­ектории, то вектор vn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускоре­ния, равная



называется нормальной составляющей ус­корения и направлена по нормали к тра­ектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

Полное ускорение тела есть геометри­ческая сумма тангенциальной и нормаль­ной составляющих (рис.5):



Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту из­менения скорости по направлению (на­правлена к центру кривизны траекто­рии).



В зависимости от тангенциальной и нормальной составляющих ускорения дви­жение можно классифицировать следую­щим образом:

1) а=0, аn = 0 — прямолинейное рав­номерное движение;

2) a=a=const, an=0 — прямолиней­ное равнопеременное движение. При та­ком виде движения



Если начальный момент времени t1=0, а начальная скорость v1=v0, то, обозна­чив t2 = t и v2 = v, получим a = (v-v0)/t, откуда

v =v0+at.

Проинтегрировав эту формулу в пре­делах от нуля до произвольного момента времени t, найдем, что длина пути, прой­денного точкой, в случае равнопеременно­го движения



3) а=f(t), аn=0 — прямолинейное движение с переменным ускорением;

4) а=0, аn=const. При а=0 ско­рость по модулю не изменяется, а изменя­ется по направлению. Из формулы аn= v2/r следует, что радиус кривизны до­лжен быть постоянным. Следовательно, движение по окружности является равно­мерным;

5) а=0, аn0 — равномерное кри­волинейное движение;

6) a=const, an0—криволинейное равнопеременное движение;

7) a= f(t), an0 — криволинейное движение с переменным ускорением.
2. Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени t зададим углом . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора d равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта (рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:





Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор d (рис. 7). Размерность угловой скорости dim=T-1, a . ее единица — радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)



В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

, а направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если =const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2. Так как промежутку времени t=T соответствует =2, то = 2/Т, откуда



Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:



Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:



При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор




 сонаправлен вектору  (рис.8), при замедленном.— противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения



Нормальная составляющая ускорения



Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение а, нор­мальное ускорение аn) и угловыми величи­нами (угол поворота , угловая скорость (о, угловое ускорение ) выражается сле­дующими формулами:



В случае равнопеременного движения точки по окружности (=const)



где 0 — начальная угловая скорость.

5. Закон сохранения импульса. Центр масс

Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассмат­риваемых как единое целое, называется механической системой. Силы взаимодей­ствия между материальными точками ме­ханической системы называются внутрен­ними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют

внешние силы, называется замкнутой (или изолированной). Если мы имеем механиче­скую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направле­ны, т. е. геометрическая сумма внутренних сил равна нулю.

Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны т1, m2, . .., тn и v1, v2, .. ., vn. Пусть F'1, F'2, ..., F'n — равнодействующие внутренних сил, действующих на каждое из этих тел, a f1, f2, ..., Fn — равнодействующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:

d/dt(m1v1)=F'1+F1,

d/dt(m2v2)=F'2+F2,

d/dt)mnvn)= F'n+Fn.

Складывая почленно эти уравнения, получим

d/dt (m1v1+m2v2+... + mnvn) = F'1+F'2+...+ F'n+F1+F2+...+ Fn.

Но так как геометрическая сумма внутрен­них сил механической системы по третьему закону Ньютона равна нулю, то

d/dt(m1v1+m2v2 + ... + mnvn)= F1 + F2+...+ Fn, или

dp/dt=F1+ F2+...+ Fn, (9.1)

где

импульс системы. Таким образом, производная по времени от им­пульса механической системы равна гео­метрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил (рассматриваем замкнутую систему)



Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения импульса справед­лив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со­хранения импульса — фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства сим­метрии пространства — его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Отметим, что согласно (9.1), импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю.

В механике Галилея — Ньютона из-за независимости массы от скорости импульс системы может быть выражен через ско­рость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен



где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе;



— масса системы.

Скорость центра масс



Учитывая, что pi =mivi, а



есть импульс р системы, можно написать

p = mvc, (9.2)

т. е. импульс системы равен произведе­нию массы системы на скорость ее цент­ра масс.

Подставив выражение (9.2) в уравне­ние (9.1), получим

mdvc/dt=F1+ F2+...+ Fn, (9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собой закон движения центра масс.

В соответствии с (9.2) из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным.

  1   2   3   4   5   6   7

Похожие:

— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconРасчетно-пояснительная записка
С помощью реечной шестерни и зубчатой рейки, прикрепленной к столу снизу, вращательное движение двигателя преобразуется в поступательное...
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconКинематика резания
Движение подачи Ds – поступательное или вращательное движение инструмента или заготовки, скорость которого s меньше скорости главного...
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconНеравномерное движение. Средняя скорость
Движение, при котором тело за равные промежутки времени проходит не равные расстояния, называется
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconА. Проектирование технологического процесса сборки Шатунно поршневой группы
Сновным рабочим механизмом поршневого двигателя. Поступательное движение поршня преобразуется во вращательное движение коленчатого...
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconДвижение. Относительность движения
Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь,...
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconКоммпраистическое Движение России Виктор Лайчук Настройки опроса Ваше мнение о коммпраизме
Коммпраистическое Движение России новое, развивающееся движение, преследующее коммпраистическую идеологию
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconПолный перечень наших услуг: Решение задач по физике
Физические основы механики (решение задач по кинематике, динамика, вращательное движение)
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconВ течение жизни человек находится на разных ступенях личного развития....
Возьмите большой лист ватмана (А1), тарелку не меньше 27 см в диаметре и простой карандаш. Обведите тарелку по контуру. 
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconКонтрольная работа № 3 Тема «Международная политика»
Значительную роль во время «холодной войны» играло Движение неприсоединения. Что это за Движение и кто был его участником? В чём,...
— это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение iconЧто представляет собой движение Дух времени (ддв)?
Кто финансирует движение? Принимаются ли пожертвования, как во многих некоммерческих организациях?
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница