Светомузыкальные инструменты


НазваниеСветомузыкальные инструменты
страница8/13
Дата публикации16.03.2013
Размер1.69 Mb.
ТипДокументы
userdocs.ru > Музыка > Документы
1   ...   5   6   7   8   9   10   11   12   13
^

Рис. 43. Композиции Ю. А. Правдюка



Для этого, естественно, надо хорошо представлять конечную цель, видеть внутрен­ним взором всю структуру воображаемой световой картины в движении. В этом случае любой предмет, освещаемый цветным светом и перемещаемый в пространстве, может способствовать воплощению на экране убедительного художественного образа.

Естественно, описанный здесь пульт управления так же, как и проекционные ячей­ки, любители могут модернизировать, автотрансформаторы заменить тиристорами, вообще применить самую современную элементную базу, вместо ватмана использо­вать фольгу и т. п. Но это будут лишь технические усовершенствования и новшества. Неизменным останется сам принцип формирования светодинамической композиции, предложенный Ю. А. Правдюком и заслуживающий самой высокой оценки, благодарнос­ти и признательности у всех, кто причастен к новому искусству.

Большие возможности открылись и при использовании в ВОУ теневой проекции по принципу, представленному на рис. 15, ж и з с дисковыми роторами. С 1963 г. экс­периментировал с ними С. М. Зорин, положивший их в основу серии СМИ "Полтава" разной мощности и размеров. В общих чертах концепция изобретателя "Полтавы" близка к позициям Ю. А. Правдюка, с которым С. М. Зорин сотрудничает уже около 20 лет. Все его СМИ сочетают простоту и широкий диапазон возможностей.

Рассмотрим подробно малогабаритный СМИ "Полтава", изготовление которого вполне доступно даже начинающему радиолюбителю. Инструмент состоит из корпуса с набором проекционных ячеек и выносного дистанционного пульта управления. Кон­струкция проекционной ячейки с узлами цвето- и формообразования представлена на рис. 44. На основании 6 закреплена втулка 15, на которую надет дисковый ламподержа-тель 14 с четырьмя маломощными лампами 7. Во втулке вращается ось 13, на одном конце которой пружинной шайбой 9 фиксирован формообразующий дисковый ротор 8, а на другом - диск 18 фрикционного вариатора. Между диском 18 и корпусом 6 вложена пружина 16 между двумя фторопластовыми шайбами 17. Трехступенчатый шкив с диском 2 вариатора приводится во вращение от внешнего электродвигателя через резиновый пассик 4. Вариатор состоит из ведущего диска 2, обрезиненного ро­лика 3, и ведомого диска 18. Ролик 3 может перемещаться вдоль оси 1, изменяя пере­даточное число вариатора. Трехступенчатый шкив вращается на опоре 5, ввинченной в основание 6. Такое совмещение плавного и ступенчатого изменения частоты вращения вала 13, а также управление частотой вращения ротора электродвигателя допускает вариацию частоты вращения формообразователя в широких пределах (более чем в 100 раз). В ячейке применен реверсивный двигатель ДСДР-2 (220 В, 50 Гц). Частоту вращения его ротора регулируют путем изменения частоты питающего тока от 20 до 200 Гц, вырабатываемого генератором.



Рис 44. Проекционная ячейка СМИ "Полтава"



Рис. 45. Принцип формообразования в СМИ "Полтава-1" (а) и "Пол­тава-2" (б)
На диске ламподержателя устанавливают четыре лампы. Их можно устанавливать на разном расстоянии от центра диска (определяется экспериментально). Когда горят две диаметрально противоположные лампы, то при вращении формообразователя на экране видны движущиеся навстречу друг другу световые образы. По форме они су­щественно отличаются от прорезей на формообразователе, так как нить лампы имеет определенную протяженность и конфигурацию. Неподвижные формообразователи 12, так же, как и светофильтры 11, находятся в специальной кассете 10, располагаемой вблизи вращающегося формообразователя.

Лампоцержатель винтом фиксируют на втулке ^ 15 в любом положении. Расстояние от ламп до формообразователя 8 определяет как размер форм на экране, так и их резкость. Если предусмотреть управление осевым перемещением ламподержателя, можно реализовать эффект "наплыва" и "отъезда", т.е. изменение размеров форм (подобно действию трансфокатора при киносъемке). Можно привести во вращательное движение сам ламподержатель, установив на втулке 16 кольцевые токосъемники, а на ламподержателе 14 — пружинящие щетки. Принцип формообразования в рассматрива­емом СМИ показан на рис. 45 а.

Пульт управления проекционными ячейками в портативном варианте СМИ "Полта­ва-!" чрезвычайно прост (рис. 46). Он состоит из переменных резисторов ПП-3 сопро­тивлением 47 Ом (их число равно числу каналов управления яркостью) и сетевого трансформатора, понижающего напряжение сети с 220 В до 8 В (хотя и применены лампы на напряжение 6,3 В). Переменными резисторами вручную регулируют напряже­ние на лампах, для чего на оси каждого резистора закреплен диск диаметром 100 мм с накаткой на цилиндрической поверхности для удобства поворачивания движка. Диски располагают в ряд на расстоянии 40 мм один от другого (расстояние это зависит от раз­меров резисторов). Выше ручек управления размещают кнопки, позволяющие реали­зовать вспышки форм на экране, если это потребуется по ходу развития композиции. Эти кнопки при нажатии замыкают переменные резисторы. На пульте установлены также тумблеры электроприводов. Тумблеры имеют среднее положение и позволяют не только включать и выключать электродвигатели, но и реверсировать их.

Еще один перспективный вариант СМИ транспарантной проекции "Полтава-2" осно­ван на принципе применения двойного барабана (см. рис. 15, д). Его конструктор С. М. Зорин обратил внимание на то, что в СМИ "Харьков", например, световой по­ток, направленный на экран, ограничен довольно малым телесным углом (угол 8, рис. 40). Формулы (1), (2) показывают, что КПД такого проектора невелик, а боль­шое расстояние от проектора до экрана еще более снижает КПД (вспомним, что осве­щенность экрана обратно пропорциональна квадрату расстояния от источника света). Конструктор задался вопросом: как, не теряя достоинства барабанного формообразо-вателя, добиться существенного увеличения яркости экрана? Увеличивать мощность ламп не стоит вследствие перегрева проектора, увеличения его габаритов и главное -размывания контура проецируемого изображения из-за большой площади светящего тела этих ламп. В результате поисков и была найдена конструкция ВОУ вида двойной барабан.

Ее преимущества в том, что она позволяет получить большой угол расхождения лучей источника света (сравните, например, угол а2 на рис. 47 и угол в на рис. 40). Это дает возможность значительно уменьшить расстояние от проекторов до экрана (в СМИ "Харьков" расстояние можно было бы уменьшить в 4-5 раз), благодаря чему яркость экрана, естественно, увеличивается. Резерв яркости экрана позволяет исполь­зовать более плотные светофильтры (получать более насыщенный цвет), обеспечивать совмещение с другими видами проекций на тот же экран. Принцип формообразования проекционной ячейки с двойным барабаном иллюстрирует рис. 45, б.



Рис. 46. Варианты пультов СМИ "Полтава-i "



Рис. 47. Формообразующая проекционная ячейка с двойным барабаном
В результате многолетнего экспериментирования удалось найти удобную в обраще­нии и надежную конструкцию проекционной ячейки с двойным барабаном (рис, 47). В цилиндрическом корпусе 1 ее светопроекционным окном (справа по рисунку) разме­щены два формообразующих барабана 7 и 9 с минимально возможным зазором между цилиндрами. Такое положение барабанов фиксировано доньями 10 и 11, в которые эти барабаны установлены. Дно внешнего барабана приводит во вращение электродвига­тель 16 (с редуктором) посредством обрезиненного ролика 7. Электродвигатель шаг-нирно закреплен в держателе 14, и пружиной 15 ролик 7 7 постоянно прижат снизу к дну 11 внешнего барабана. От него к дну внутреннего барабана вращение передается четырьмя обрезиненными роликами 2 (на рис. показаны два из них), укрепленными на качающихся осях 12.

Оба барабана вращаются в противоположные стороны вокруг общего вала 13. Для надежного контакта между доньями они сжаты пружиной 3. Это обеспечивает равно­мерное и плавное вращение барабанов. Барабаны можно легко извлечь из доньев, пе­ревернуть на 180°.

Конструкция ячейки "двойной барабан" позволяет управлять масштабом изобра­жения перемещением лампы ^ 8 относительно стенки внутреннего барабана 9. Возмож­но также вертикальное перемещение держателя лампы 5, что используется, как при юстировке всех светопроекционных ячеек и при сведении изображения на одном эк­ране, так и для композиционного совмещения световых образов. Манипулировать ис­точником света при подготовительной работе ВОУ можно вручную, а во время кон­цертного исполнения лучше это делать дистанционно. Втулка 6 для закрепления источ­ника света перемещается относительно верхней крышки 4 проекционной ячейки.

Конструктивную высоту барабанов определяют исходя из выбранного размера эк­рана и расстояния до него, так как нужно обеспечить заполнение экрана рисунком при любом положении источника света.

Каждый из барабанов можно выполнить двуслойным и управлять сдвигом слоев. Это нетрудно сделать, по крайней мере, для внутреннего барабана, расположив электро­привод с подвижным кольцевым токосъемником в центре, над прижимной пружиной 3. Такая конструкция позволяет светохудожнику изменять конфигурацию световых образов, а также управлять их исчезновением или появлением при полной яркости источников света (если сделать промежутки между прорезями, равными по размерам самим прорезям).

Все перечисленные приемы управления формой могут показаться излишне услож­ненными или трудно выполнимыми. Но зато им сопутствует увеличение числа степе­ней свободы управления формой на экране, выявленное светохудожником на практике. В некоторых конструкциях изобретатель ввел дистанционное управление сменой цвета. Сделать это нетрудно, поскольку корпус ячейки цилиндрический, а наибольший необ­ходимый на практике угол раскрытия по горизонтали оказался 95°. Следовательно, на цилиндрический корпус проекционной ячейки можно надеть еще один цилиндр, составленный из четырех дуговых секций, изготовленных из цветной пленки. Поворачивая этот цилинрр на 45°, можно окрашивать свет в любой из четырех цветов. Все это позволяет реализовать динамику светового образа по многим параметрам, что не­доступно другим известным СМИ.



^ Рис. 48. Проекционная ячейка СМИ "Полтава-2"

Конструктор испытал также независимый привод для наружного и внутреннего барабанов. Это позволяет вращать барабаны не только навстречу, но и в одну сторону, причем скорость вращения каждого из них можно варьировать в самых широких пре делах. При этом возникает своеобразный эффект "набегания" световых форм.

Внешний вид проекционной ячейки показан на рис. 48, а и б (наверху виден меха­низм изменения масштаба). Формообразователи изготовлены из латунной фольги, на которую фотоспособом был нанесен рисунок, а затем вытравлен. После травления прямоугольная заготовка свернута в цилиндр и края спаяны. Для увеличения жесткос­ти по окружности цилиндра сверху и снизу припаяна стальная проволока диаметром 1,5-2 мм. Барабаны можно изготавливать также из цветной пленки, можно использо­вать стеклянные цилиндры.

Один из вариантов СМИ "Полтава-2" для комбината здоровья в Красногорске Мос­ковской обл. изготовлен в 1978-1980 гг. СМИ снабжен пультом управления (конст­руктор Б. X. Нестеренко), выполненным на базе клавиатуры электрооргана "Лель". Ползунковые регуляторы (переменные резисторы СПЗ-23) предназначены для плавно­го управления яркостью в каждом световом канале. Клавиатуру используют для дис­кретного выведения проекции на экран, для вспышек и световых "аккордов". Имеет­ся также педаль плавного регулирования общей яркости всей светодинамической ком­позиции. Независимо от того, сколько в эпизоде занято ячеек, все изображения могут быть плавно "уведены" с экрана общей педалью.



^ Рис. 49. Схема блока усиления мощности СМИ
Рассмотрим некоторые электронные узлы этого СМИ. Узел управления яркостью (рис. 49) собран на печатной плате, укрепленной непосредственно в проекционной ячейке для предельного укорочения токовых цепей. Узел питается сетевым напряже­нием 220 В через резисторы R4 и R5. Это напряжение выпрямлено диодным мостом VD4 - VD7. На транзисторы поступают трапецеидальные импульсы напряжением 24 В. Сигнал управления напряжением + (0-8) В подведен к базе управляющего транзистора VT2. Параллельно эмиттерному переходу транзистора VТ2 подключен транзистор VTI в диодном включении, образуя генератор тока. Далее сигнал поступает на анало­гичную пару транзисторов VT3 и VT4. Если управляющий сигнал отрицателен, пару VTI, VT2 можно исключить.

С увеличением управляющего сигнала открывается транзистор VT4 и начинается заряд конденсатора СУ. Как только напряжение на конденсаторе достигнет порогово­го уровня язабатывания однопервходного транзистора VT5, он открывается, конден­сатор С1 разряжается через первичную обмотку трансформатора 77 (применен импуль­сный трансформатор ТМ5-27, но можно использовать и любой другой с коэффициентом трансформации 3:1). Со вторичной обмотки трансформатора короткие импульсы то­ка поступают на управляющий электрод симистора, он открывается до конца полупе­риода. Таким образом реализовано фазовое управление мощностью нагрузки (лампы накаливания). При отсутствии управляющего сигнала на нить лампы нужно подавать начальное напряжение, достаточное для того, чтобы нить довести до красного кале­ния, - это позволяет линеаризировать характеристику управления. Начальное напря­жение подбирают резистором R2. В некоторых проекционных ячейках вместо ламп на 220 В, 150 Вт применены лампы на 127 В, работающие в режиме перекала. На них подают напряжение не более 160 В. Предельный уровень управляющего выходного напряжения устанавливают подборкой резистора R1.

Узел управления частотой и направлением вращения барабанов формообразовате-лей показан на рис. 50. С движка переменного резистора R! управляющий сигнал через резистор R4 подастся на инвертирующий вход ОУ DA1. Напряжение на инвертирую­щем входе фиксировано на уровне около 4 В делителем R2R3. К выходу ОУ чере? резистор R 7 включен усилитель мощности на транзисторах VT1 к VT2. С выхода этого усилителя ток поступает на обмотку реверсивного двигателя МКМ-2 постоянного тока. Режим управления частотой вращения выбран таким, чтобы при среднем положении движка переменного резистора R1 ротор электродвигателя не вращался. При поворо­те ручки этого резистора, например влево ротор должен вращаться влево, причем частота вращения его прямо пропорциональна смещению движка от среднего поло­жения.



^ Рис. 50. Схема узла управления частотой и направлением вращения формообразователя
По такой же схеме собран и привод узла управления масштабом. Разница заключа­ется лишь в том, что резистор R3 установлен непосредственно в ячейке и его движок связан с механизмом перемещения лампы. Как только ручкой управляющего резисто­ра R1 на пульте управления вводят небольшое рассогласование, электродвигатель Ml начинает перемещать лампу и одновременно передвигать движок резистора R3 до тех пор, пока рассогласование не будет скомпенсировано, и ротор двигателя остано­вится.


1   ...   5   6   7   8   9   10   11   12   13

Похожие:

Светомузыкальные инструменты iconСветомузыкальные инструменты
И хотя не все еще определилось до конца в спорах о природе нового искусства, читатель уже может ознакомиться с историей и существующей...
Светомузыкальные инструменты iconРучные протейперы-никельтитановые инструменты (слайд 1)
Протейперы – никель-титановые инструменты, отличительной чертой которых является (слайд 2)
Светомузыкальные инструменты iconЛекция №2. Эндодонтические инструменты Помимо знания анатомии зубов,...
Эндодонтические инструменты предназначены для работы в полости зуба, в корневых каналах
Светомузыкальные инструменты iconЧто означает цена и какие другие инструменты рынка имел в виду Беккер?
«Цены и другие инструменты рынка регулируют распределение редких ресурсов в обществе, ограничивая тем самым желания участников, координируя...
Светомузыкальные инструменты iconЭкзаменационные вопросы по дисциплине «Процессы формообразования и инструменты(пфи)»
Цели и задачи дисциплины «Процессы формообразования и инструменты(пфи)»,ее связь с другими дисциплинами. Роль и значение режущего...
Светомузыкальные инструменты iconС. Беккер Что означает цена и какие другие инструменты рынка имел в виду Беккер?
«Цены и другие инструменты рынка регулируют распределение редких ресурсов в обществе, ограничивая тем самым желания участников, координируя...
Светомузыкальные инструменты icon14. Основы управленческого учета, методы и инструменты в теории огран ичений (тос) Голдратта
Тема 14. Основы управленческого учета, методы и инструменты в теории ограничений (тос) Голдратта
Светомузыкальные инструменты icon1. Маркетинг: понятие и деятельность. Инструменты маркетинга. Система...
Маркетинг: понятие и деятельность. Инструменты маркетинга. Система маркетинговых коммуникаций
Светомузыкальные инструменты iconСодержание учебной программы тема Мониторинг сми: инструменты и способы...
Тема Мониторинг сми: инструменты и способы оценки эффективности работы редакции
Светомузыкальные инструменты iconЛекция 13 Тема: цели и инструменты макроэкономической политики. Национальное счетоводство

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2020
контакты
userdocs.ru
Главная страница